Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archive of Mechanical Engineering

The Journal of Committee on Machine Building of Polish Academy of Sciences

4 Issues per year

CiteScore 2016: 0.44

SCImago Journal Rank (SJR) 2016: 0.162
Source Normalized Impact per Paper (SNIP) 2016: 0.459

Open Access
See all formats and pricing
More options …
Volume 59, Issue 3 (Oct 2012)

The impact of CO2 compression systems on the compressor power required for a pulverized coal-fired power plant in post-combustion carbon dioxide sequestration

Andrzej Witkowski / Mirosław Majkut
Published Online: 2012-10-31 | DOI: https://doi.org/10.2478/v10180-012-0018-x

The aim of this paper is to analyze various CO2 compression processes for postcombustion CO2 capture applications for 900 MW pulverized coal-fired power plant. Different thermodynamically feasible CO2 compression systems will be identified and their energy consumption quantified. A detailed thermodynamic analysis examines methods used to minimize the power penalty to the producer through integrated, low-power compression concepts. The goal of the present research is to reduce this penalty through an analysis of different compression concepts, and a possibility of capturing the heat of compression and converting it to useful energy for use elsewhere in the plant.


Celem niniejszej pracy jest analiza róznych procesów sprezania CO2 wychwyconego ze spalin bloku energetycznego o mocy 900 MW na pył weglowy. Przedstawiono szereg róznych procesów sprezania i okreslono zuzycie energii kazdego z nich. Szczegółowa analiza termodynamiczna umozliwiła okreslenie sposobów zminimalizowania kosztów energii poprzez dobór najsprawniejszego procesu sprezania oraz wykorzystanie ciepła sprezania w obiegu cieplnym siłowni.

Keywords: post-combustion CO2 capture; compression processes; pumping; compression power; integration into the power plant

  • [1] Aartun I.: Carbon Dioxide, CO2, Pressure-Enthalpy Diagram. Based on the Program Alltrops, NTNU 2002. Center for Applied Thermodynamics Studies, University of Idaho.Google Scholar

  • [2] Angus S. et al.: International thermodynamic tables of the fluid state - Carbon Dioxide, International Union of Pure and Applied Chemistry (IUPAC), Pergamon Press, 1976.Google Scholar

  • [3] Aspen, Version 7.0, User Guide, 2008.Google Scholar

  • [4] Boron P.R., Habel R.: CO2 Compression Challangers. ASME Turbo Expo 2007.Google Scholar

  • [5] Botero C., Finkenrath M., Belloni C., Bertolo S., D’Ercole M., Gori E., Tacconelli R.: Thermoeconomic Evaluation of CO2 Compression Strategies for Post-Combustion CO2 Capture Applications. Proc. of ASME Turbo Expo 2009.Google Scholar

  • [6] CO2 Capture and Storage. VGB Report on the State of the Art. 2004.Google Scholar

  • [7] Edmister W.C., and Lee B.I.: Applied Hydrocarbon Thermodynamics. Vol. 1, Second Edition, Gulf Publishing Company, 1984.Google Scholar

  • [8] Gresh M.T.: Compressor Performance. Butterworth-Heinemann. Boston, 1991.Google Scholar

  • [9] G¨ottlicher G.: The Energetics of Carbon Dioxide Capture in Power Plants. NETL 2004.Google Scholar

  • [10] Kidd H.A., Miller H.F.: Compression Solutions for CO2 Applications. Traditional Centrifugal and Supersonic Technology. Engineers Notbook. Dresser-Rand.Google Scholar

  • [11] Koopman A.A., Bahr D.A.: The Impact of CO2 Compressor Characteristics and Integration in post Combustion Carbon Sequestration Comparative Economic Analysis. Proc. of ASME Turbo Expo 2010.Google Scholar

  • [12] Lawlor S.: CO2 Compression Using Supersonic Shock Wave Technology. Ramgen Power System, September 15, 2010.Google Scholar

  • [13] L¨udtke K.H.: Process Centrifugal Compressors. Springer Verlag Berlin Heidelberg 2004.Google Scholar

  • [14] Łukowicz H., Chmielniak T., Kochaniewicz A., Mroncz M.: An Analysis of the use of Waste Heat from Exhaust Gases of a Brown-Coal Fired Power Plant for Drying Coal. Rynek Energii nr 1, February 2011.Google Scholar

  • [15] Łukowicz H., Mroncz M.: Basic Technological Concepts of a “Capture Ready” Power Plant, Energy & Fuels, DOI: 10.1021/ef201669g.CrossrefWeb of ScienceGoogle Scholar

  • [16] Moore J.J., Nored M.G.: Novel Concepts for the Compression of Large Volumes of Carbon Dioxide. Proceedings of ASME Turbo Expo 2008.Google Scholar

  • [17] Moran M.J., Shapiro H.N.: Fundamentals of Engineering Thermodynamics. John Wiley & Sons, Inc. New York, 1988.Google Scholar

  • [18] Ramgen Power Systems:Workshop on Future Large CO2 Compression Systems. Gaithersburg, March 30-31, 2009.Google Scholar

  • [19] Schultz J.: The polytropic Analysis of Centrifugal Compressors. Journal of Engineering for Power, January 1962.Google Scholar

  • [20] Span R. and Wagner W.: A New Equation of State for Carbon Dioxide covering the Fluid Region from the Triple Point Temperature to 1100 K at a Pressure up to 800 MPa. J. Phys. Chem. Ref. Data. Vol. 6, pp. 1509-1596, (1996).Google Scholar

  • [21] Szargut J.: Termodynamika techniczna. Wydawnictwo Politechniki Slaskiej, Gliwice, 2000.Google Scholar

  • [22] VDI 2045: Acceptance and Performance Tests on Turbocompressors and Displacement Compressors. Theory and Examples. D¨usseldorf 1993. Google Scholar

About the article



Published Online: 2012-10-31

Published in Print: 2012-10-01

Citation Information: Archive of Mechanical Engineering, ISSN (Print) 0004-0738, DOI: https://doi.org/10.2478/v10180-012-0018-x.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in