Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archive of Mechanical Engineering

The Journal of Committee on Machine Building of Polish Academy of Sciences

4 Issues per year


CiteScore 2016: 0.44

SCImago Journal Rank (SJR) 2016: 0.162
Source Normalized Impact per Paper (SNIP) 2016: 0.459

Open Access
Online
ISSN
2300-1895
See all formats and pricing
More options …

Continuum Mechanical Considerations for Rigid Bodies and Fluid-Structure Interaction Problems

Christian Hesch
  • Chair of Computational Mechanics, University of Siegen, Germany
  • Email:
/ Peter Betsch
  • Chair of Computational Mechanics, University of Siegen, Germany
  • Email:
Published Online: 2013-03-27 | DOI: https://doi.org/10.2478/meceng-2013-0006

The present work deals with continuum mechanical considerations for deformable and rigid solids as well as for fluids. A common finite element framework is used to approximate all systems under considerations. In particular, we present a standard displacement based formulation for the deformable solids and make use of this framework for the transition of the solid to a rigid body in the limit of infinite stiffness. At last, we demonstrate how to immerse a discretized solid into a fluid for fluid-structure interaction problems.

Streszczenie

Przedstawiona praca dotyczy mechaniki continuum w zastosowaniu do ciał sztywnych i odkształcalnych oraz do płynów. W ramach wspólnego systemu elementów skonczonych dokonano aproksymacji całego rozwazanego systemu.Wszczególnosci, przedstawiono standardowe, oparte na przemieszczeniach, sformułowanie FEM dla ciał deformowalnych i wykorzystano je przy przejsciu granicznym do ciała o nieskonczonej sztywnosci. W koncu, zademonstrowano problemy interakcji miedzy płynem a struktura na przykładzie zdyskretyzowanego ciała zanurzonego w cieczy

Keywords : continuum mechanics; rigid bodies; covariant; fluid-structure interaction

  • [1] P. Betsch: The discrete null space method for the energy consistent integration of constrained mechanical systems Part I: Holonomic constraints. Comput. Methods Appl. Mech. Engrg., 194:5159-5190, 2005.Google Scholar

  • [2] P. Betsch, R. Siebert, N. Saenger: Natural coordinates in the optimal control of multibody systemssie. J. Comput. Nonlinear Dynam., 7(1):011009/1-8, 2011.Google Scholar

  • [3] P. Betschand, P. Steinmann: Conserving properties of a time FE method - Part II: Timestepping schemes for non-linear elastodynamics. Int. J. Numer. Methods Eng., 50:1931-1955, 2001.Google Scholar

  • [4] P. Betschand, P. Steinmann: Conservation Properties of a Time FE Method. Part III: Mechanical systems with holonomic constraints. Int. J. Numer. Methods Eng., 53:2271-2304, 2002.Google Scholar

  • [5] P. Betschand, S. Uhlar: Energy-momentum conserving integration of multibody dynamics. Multibody System Dynamics, 17(4):243-289, 2007.CrossrefWeb of ScienceGoogle Scholar

  • [6] A.J. Gil, A. Arranz Carre˜no, J. Bonet, O. Hassan: The immersed structural potential method for haemodynamic applications. Journal of Computational Physics, 229:8613-8641, 2010.Google Scholar

  • [7] O. Gonzalez: Time integration and discrete Hamiltonian systems. J. Nonlinear Sci., 6:449-467, 1996.CrossrefGoogle Scholar

  • [8] C. Hesch, A.J. Gil, A. Arranz Carre˜no, J. Bonet: On immersed techniques for fluid-structur interaction. Comput. Methods Appl. Mech. Engrg., 247-248:51-64, 2012.Google Scholar

  • [9] H.H. Hu, N.A. Patankar, M.Y. Zhu: Direct numerical simulations of fluid-soli systems using the arbitrary Lagrangian-Eulerian technique. Journal of Computational Physics, 169:427-462, 2001.Google Scholar

  • [10] T.J.R. Hughes: The Finite Element Method. Dover Publications, 2000.Google Scholar

  • [11] W.K. Liu, D.W. Kim, S. Tang: Mathematical foundations of the immersed finite lement method. Computational Mechanics, 39:211-222, 2007.Web of ScienceGoogle Scholar

  • [12] L.E. Malvern: Introduction to the mechanics of a continous medium. Prentice Hall, 1969.Google Scholar

  • [13] M.B. Rubin: Cosserat Theories: Shells, Rodsand Points. Kluwer Academic Publishers, 2010.Google Scholar

  • [14] T.E. Tezduyar: Stabilized finit element for mulations for incompressible flow computations. Advances in applied mechanics, 28:1-44, 1992.Google Scholar

  • [15] L. Zhang, A. Gerstenberger, X. Wang, W.K. Liu: Immersed finit element method. Comput. Methods Appl. Mech. Engrg., 193:2051-2067, 2004.Google Scholar

About the article

Published Online: 2013-03-27

Published in Print: 2013-03-01


Citation Information: Archive of Mechanical Engineering, ISSN (Print) 0004-0738, DOI: https://doi.org/10.2478/meceng-2013-0006.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in