Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archive of Mechanical Engineering

The Journal of Committee on Machine Building of Polish Academy of Sciences

4 Issues per year

CiteScore 2016: 0.44

SCImago Journal Rank (SJR) 2016: 0.162
Source Normalized Impact per Paper (SNIP) 2016: 0.459

Open Access
See all formats and pricing
More options …
Volume 61, Issue 1


Stack Parameters Effect on the Performance of Anharmonic Resonator Thermoacoustic Heat Engine

Mostafa A. Nouh / Nadim M. Arafa
  • Department of Physics, The American University in Cairo, P.O. Box 74 New Cairo 11835, Cairo, Egypt
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ehab Abdel-Rahman
  • Department of Physics, The American University in Cairo, P.O. Box 74 New Cairo 11835, Cairo, Egypt
  • The Yousef Jameel Science and Technology Research Center, The American University in Cairo, P.O. Box 74 New Cairo 11835, Cairo, Egypt
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-05-17 | DOI: https://doi.org/10.2478/meceng-2014-0006


A thermoacoustic heat engine (TAHE) converts heat into acoustic power with no moving parts. It exhibits several advantages over traditional engines, such as simple design, stable functionality, and environment-friendly working gas. In order to further improve the performance of TAHE, stack parameters need to be optimized. Stack’s position, length and plate spacing are the three main parameters that have been investigated in this study. Stack’s position dictates both the efficiency and the maximum produced acoustic power of the heat engine. Positioning the stack closer to the pressure anti-node might ensure high efficiency on the expense of the maximum produced acoustic power. It is noticed that the TAHE efficiency can further be improved by spacing the plates of the stack at a value of 2.4 of the thermal penetration depth, ςk . Changes in the stack length will not affect the efficiency much as long as the temperature gradient across the stack, as a ratio of the critical temperature gradient Γ, is more than 1. Upon interpreting the effect of these variations, attempts are made towards reaching the engine’s most powerful operating point.


Termoakustyczna maszyna cieplna (TAHE) przekształca ciepło w energie akustyczna bez uzycia czesci ruchomych. W porównaniu z maszynami tradycyjnymi ma ona szereg zalet, takich jak prosta konstrukcja, stabilnosc działania oraz wykorzystanie gazów przyjaznych dla srodowiska. W celu dalszej poprawy osiagów maszyny TAHE nalezy zoptymalizowac parametry stosu (zespołu waskich kanałów miedzy płytami wymiennika ciepła). Trzema głównymi parametrami analizowanymi w przedstawionej pracy sa pozycja stosu, długosc i odstep miedzy płytami. Pozycja stosu decyduje zarówno o sprawnosci jak maksymalnej mocy akustycznej wytwarzanej przez maszyne cieplna. Umieszczenie stosu blizej strzałki fali stojacej moze zapewnic wieksza sprawnosc kosztem maksymalnej wytwarzanej mocy akustycznej. Stwierdzono, ze dalsza poprawa sprawnosci maszyny TAHE moze byc osiagnieta gdy zastosuje sie odstep płyt stosu równy 2,4 cieplnej głebokosci wnikania, k . Zmiany długosci stosu nie maja wielkiego wpływu na sprawnosc tak długo, jak stosunek krytycznego gradientu cieplnego jest wiekszy od 1. Na podstawie interpretacji efektów tych zmian podjeto wysiłki dla uzyskania najlepszych osiagów maszyny.

Keywords : thermoacoustic; stack; anharmonic; resonator; engine; optimization


  • [1] Ehab Abdel-Rahman, Mahmoud Hammam, Mahmoud Salah, and Samy Abdel-Mordy: Design, development and testing a solar concentrator for thermoacoustic cooling applications. International journal of pure and applied physics (IJPAP), Vol. 2, No. 1, 99-109 (2006).Google Scholar

  • [2] Mostafa A. Nouh, Nadim M. Arafa, Krister Larsson, Ehab Abdel-Rahman: Design study of an anharmonic resonator standing wave thermoacoustic heat engine. Proceedings of the 16th International Congress on Sound and Vibration (2009).Google Scholar

  • [3] Swift G.W.: Thermoacoustics: A unifying perspective for some engines and refrigerators. The Acoustical Society of America, Melville, NY (2002).Google Scholar

  • [4] Yunus A. Cengel, Michael A. Boles: Thermodynamics: An Engineering Approach. McGraw Hill, NY (2002).Google Scholar

  • [5] Swift G.W.: Analysis and performance of a large thermoacoustic engine. J. Acoust. Soc. Am. 92: 1551-1563 (1992).Google Scholar

  • [6] Swift G.W. Thermoacoustic engines. J. Acoust. Soc. Am.; 84:1145-1179 (1988).Google Scholar

  • [7] Swift G.W. Thermoacoustic engines and refrigerators. Encyclopedia Appl. Phys. 21: 245-264 (1997).Google Scholar

  • [8] Hadi Babaei, Kamran Siddiqui. Design and optimization of thermoacoustic devices. Energy Conversion and Management 49: 3585-3598 (2008).Web of ScienceGoogle Scholar

  • [9] Symko O.G., Abdel-Rahman E., KWON Y.S., Emmi M., Behunin R.: Design and development of high-frequency thermoacoustic engines for thermal management in microelectronics. Microelectronics Journal 35: 185-191 (2004).Google Scholar

  • [10] Tijani M.E.H., Zeegers J.C.H., De Waele A.T.A.M.: Design of thermoacoustic refrigerators. Cryogenics 42: 49-57 (2002). Google Scholar

  • [11] Lawrence E. Kinsler, Austin R. Frey, Alan B. Coppens, James V. Sanders: Fundamentals of acoustics, third edition. John Wiley & Sons NY (1985).Google Scholar

  • [12] Wheatley J.C., Hofler T., Swift G.W., Migliori A.: Understanding some simple phenomena in thermoacoustics with applications to acoustical heat engines. Am. J. Phys. 53: 147-162 (1985).Google Scholar

  • [13] Ward B., Clark J., and Swift G.W.: Design environment for low-amplitude thermoacoustic energy conversion, DELTAEC version 6.2: Users guide. Los Alamos national laboratory (2008). Google Scholar

About the article

Received: 2013-10-02

Published Online: 2014-05-17

Published in Print: 2014-03-01

Citation Information: Archive of Mechanical Engineering, Volume 61, Issue 1, Pages 115–127, ISSN (Online) 2300-1895, DOI: https://doi.org/10.2478/meceng-2014-0006.

Export Citation

© by Mostafa A. Nouh. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Harshal Agarwal, Vishnu R. Unni, K.T. Akhil, N.T. Ravi, S. Md. Iqbal, R.I. Sujith, and Bala Pesala
Applied Acoustics, 2016, Volume 110, Page 110

Comments (0)

Please log in or register to comment.
Log in