Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archive of Mechanical Engineering

The Journal of Committee on Machine Building of Polish Academy of Sciences

4 Issues per year


CiteScore 2016: 0.44

SCImago Journal Rank (SJR) 2016: 0.162
Source Normalized Impact per Paper (SNIP) 2016: 0.459

Open Access
Online
ISSN
2300-1895
See all formats and pricing
More options …
Volume 61, Issue 1 (Mar 2014)

Free Vibration of Piezo-Nanowires Using Timoshenko Beam Theory with Consideration of Surface and Small Scale Effects

Atta Oveisi
Published Online: 2014-05-17 | DOI: https://doi.org/10.2478/meceng-2014-0008

Abstract

This paper investigates the influence of surface effects on free transverse vibration of piezoelectric nanowires (NWs). The dynamic model of the NW is tackled using nonlocal Timoshenko beam theory. By implementing this theory with consideration of both non-local effect and surface effect under simply support boundary condition, the natural frequencies of the NW are calculated. Also, a closed form solution is obtained in order to calculate fundamental buckling voltage. Finally, the effect of small scale effect on residual surface tension and critical electric potential is explored. The results can help to design piezo-NW based instruments.

Streszczenie

W pracy badano wpływ efektów powierzchniowych na poprzeczne drgania swobodne nanodrutów piezoelektrycznych (nanowires, NW). Model dynamiczny NW stworzono posługujac sie nielokalna teoria belki Timoszenki. Stosujac te teorie, przy uwzglednieniu zarówno efektów powierzchniowych i efektów nielokalnych, obliczono czestotliwosci drgan własnych nanodrutu. Uzyskane rozwiazanie, o formie zamknietej, pozwala takze obliczyc podstawowe napiecie wyboczenia. Ponadto, zbadano wpływ efektów małej skali na resztkowe naprezenie powierzchniowe i potencjał elektryczny. Wyniki pracy moga byc uzyteczne przy projektowaniu przyrzadów wykorzystujacych nanodruty piezoelektryczne.

Keywords : piezoceramic nanobeams; free vibrations; buckling; surface stress; non-local elasticity

References

  • [1] Wu G., Ji H., Hansen K., Thundat T., Datar R., Cote R., Hagan M.F., Chakraborty A.K., Majumdar A.: Origin of nanomechanical cantilever motion generated from biomolecular interactions. Proc. Natl Acad. Sci. USA, 2001, pp. 1560-1564.Google Scholar

  • [2] Cui Y., Zhong Z.H., Wang D.L., WangW.U., Lieber C.M.: High performance silicon nanowire field effect transistors. Nano Letters, 2003, Vol.3, No. 2, pp. 149-152.CrossrefGoogle Scholar

  • [3] Cuenot S., Fretigny C., Demoustier-Champagne S., Nysten B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Physical review series B, 2004, Vol. 69, No. 16, 165410(1-5).Google Scholar

  • [4] Jing G.Y., Duan H.L., Sun X.M., Zhang Z.S., Xu J., Li Y.D., Wang J.X., Yu D.P.: Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy. Physical review series B, 2006, Vol. 73, No. 16, 235409(1-6).Google Scholar

  • [5] Wang Z.Q., Zhao Y.P., Huang Z.P.: The effects of surface tension on the elastic properties of nano structures. International journal of engineering science, 2010, Vol. 48, pp. 140-150.CrossrefGoogle Scholar

  • [6] Khajeansari A., Baradaran G.H., Yvonnet J.: An explicit solution for bending of nanowires lying on Winkler-Pasternak elastic substrate medium based on the Euler-Bernoulli beam theory. International journal of engineering science, 2012, Vol. 52, pp. 115-128.Web of ScienceCrossrefGoogle Scholar

  • [7] Song F., Huang G.L., Park H.S., Liu X.N.: continuum model for the mechanical behavior of nanowires including surface and surface-induced initial stresses, International journal of solids and structures, 2011, Vol. 48, pp. 2154-2163Google Scholar

  • [8] Song F., Huang G.L.: Modeling of surface stress effects on bending behavior of nanowires: Incremental deformation theory. Physics letters A, 2009, Vol. 373, pp. 3969-3973.Web of ScienceGoogle Scholar

  • [9] Park H.S.: Surface stress effects on the critical buckling strains of silicon nanowires. Computational materials science, 2012, Vol. 51, pp. 396-401.CrossrefWeb of ScienceGoogle Scholar

  • [10] Olsson P.A.T., Park H.S.: Atomistic study of the buckling of gold nanowires. Acta materialia, 2011, Vol. 59, pp. 3883-3894.CrossrefWeb of ScienceGoogle Scholar

  • [11] Gheshlaghi B., Hasheminejad S.M.: Surface effects on nonlinear free vibration of nanobeams, Composites: part B, 2011, Vol. 42, pp. 934-937.CrossrefWeb of ScienceGoogle Scholar

  • [12] Yao H., Yun G.: The effect of nonuniform surface elasticity on buckling of ZnO nanowires. Physica E, 2012, Vol. 44, pp. 1916-1919.CrossrefWeb of ScienceGoogle Scholar

  • [13] Gheshlaghi B., Hasheminejad S.M.: Adsorption-induced resonance frequency shift in Timoshenko microbeams. Current Applied physics, 2011, Vol. 11, pp. 1035-1041.Web of ScienceCrossrefGoogle Scholar

  • [14] Gheshlaghi B., Hasheminejad S.M.: Vibration analysis of piezoelectric nanowires with surface and small scale effects. Current applied physics, 2012, Vol. 12, pp. 1096-1099.CrossrefGoogle Scholar

  • [15] Wang G.F., Feng X.Q.: Timoshenko beam model for buckling and vibration of nanowires with surface effects. Journal of physics D: applied physics, 2009, Vol. 42, 155411(1-5).Google Scholar

  • [16] Yan Z., Jiang L.Y.: The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology, 2011, Vol. 22, 245703(1-7).Web of ScienceGoogle Scholar

  • [17] Zhan H.F., Gu Y.T.: Surface effects on the dual-mode vibration of 110 silver nanowires with different cross-sections, Journal of physics D: applied physics, 2012, Vol. 45, 465304(1-10).Google Scholar

  • [18] Wang G.F., Feng X.Q.: Effect of surface stresses on the vibration and buckling of piezoelectric nanowires. EPL, 2010, Vol. 91, 56007(1-4).Web of ScienceGoogle Scholar

  • [19] Jia-Hong Z., Xiao-Li M., Qing-Quan L., Fang G., Min L., Heng L., Yi-Xian G.: Mechanical properties of silicon nanobeams with an undercut evaluated by combining the dynamic resonance test and finite element analysis. Chinese physics B, 2012, Vol. 21, No. 8, 086101.Google Scholar

  • [20] He J., Lilley C.M.: Surface stress effect on bending resonance of nanowires with different boundary conditions. Applied physics letters, 2008, Vol. 93, 263108(1-3).Google Scholar

  • [21] Wang G.F., Feng X.Q.: Surface effects on buckling of nanowires under uniaxial compression. Applied physics letters, 2009, Vol. 94, 141913(1-3).Web of ScienceGoogle Scholar

  • [22] Hasheminejad S.M., Gheshlaghi B.: Dissipative surface stress effects on free vibrations of nanowires. Applied physics letters, 2010, Vol. 97, 253103(1-3).Google Scholar

  • [23] Olsson P.A.T, Park H.S., Lidstr¨om P.C.: The Influence of shearing and rotary inertia on the resonant properties of gold nanowires. Journal of applied physics, 2010, Vol. 108, 104312(1-9).Google Scholar

  • [24] Zhan H.F., Gu Y.T.: Modified beam theories for bending properties of nanowires considering surface/intrinsic effects and axial extension effect. Journal of applied physics, 2012, Vol. 111, 084305(1-9).Google Scholar

  • [25] Cha S.N., Seo J.S., Kim S.M., Kim H.J., Park Y.J., Kim S.W., Kim J.M.: Sound-driven piezoelectric nanowire based nanogenerators, Advanced materials, 2010, Vol. 22, pp. 4726-4730.CrossrefWeb of ScienceGoogle Scholar

  • [26] Gao Y.F.,Wang Z.L.: Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics, Nano letters, 2007, Vol. 7, pp. 2499-2505.Web of ScienceCrossrefGoogle Scholar

  • [27] Cady W.G.: Piezoelectriciry, New York, McGraw-Hill Book Company Inc., 1946.Google Scholar

  • [28] Reddy J.N.: Energy Principles and Variational Methods in Applied Mechanics, second ed., New York, John Wiley & Sons, 2002.Google Scholar

  • [29] Reddy J.N.: Theory and Analysis of Elastic Plates and Shells, second ed., Philadelphia Taylor & Francis, 2007.Google Scholar

  • [30] Eringen A.C.: Nonlocal polar elastic continua, International journal of engineering science, 1972, Vol. 10, pp. 1-16.CrossrefGoogle Scholar

  • [31] Eringen A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of applied physics, 1983, Vol. 54, pp. 4703-4710.CrossrefGoogle Scholar

  • [32] Eringen A.C.: Nonlocal Continuum Field Theories, New York, Springer-Verlag, 2002.Google Scholar

  • [33] Wang G.F., Feng X.Q.: Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Applied physics letters, 2007, Vol. 90, 231904(1-3).Web of ScienceGoogle Scholar

  • [34] Shenoy V.B.: Size dependence of thermal expansion of nanostructures. Physical review series B, 2005, Vol. 71, 0941041-0941044. Google Scholar

About the article

Received: 2013-11-26

Published Online: 2014-05-17

Published in Print: 2014-03-01


Citation Information: Archive of Mechanical Engineering, ISSN (Online) 2300-1895, DOI: https://doi.org/10.2478/meceng-2014-0008.

Export Citation

© by Atta Oveisi. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in