Jump to ContentJump to Main Navigation
Show Summary Details

Archive of Mechanical Engineering

The Journal of Committee on Machine Building of Polish Academy of Sciences

4 Issues per year


SCImago Journal Rank (SJR) 2015: 0.178
Source Normalized Impact per Paper (SNIP) 2015: 0.453
Impact per Publication (IPP) 2015: 0.314

Open Access
Online
ISSN
2300-1895
See all formats and pricing

A High Performance Computing Approach to the Simulation of Fluid-Solid interaction Problems with Rigid and Flexible Components

Zastosowanie Wysokowydajnej Techniki Obliczeniowej (HPC) Do Symulacji Problemów Interakcji Między Płynem I Ciałem Stałym z Elementami Sztywnymi i Elastycznymi

Arman Pazouki
  • University of Wisconsin-Madison, 1513 University Avenue, Madison, WI-53706, USA
  • Email:
/ Radu Serban
  • University of Wisconsin-Madison, 1513 University Avenue, Madison, WI-53706, USA
  • Email:
/ Dan Negrut
  • University of Wisconsin-Madison, 1513 University Avenue, Madison, WI-53706, USA
  • Email:
Published Online: 2014-08-15 | DOI: https://doi.org/10.2478/meceng-2014-0014

Abstract

This work outlines a unified multi-threaded, multi-scale High Performance Computing (HPC) approach for the direct numerical simulation of Fluid-Solid Interaction (FSI) problems. The simulation algorithm relies on the extended Smoothed Particle Hydrodynamics (XSPH) method, which approaches the fluid flow in a La-grangian framework consistent with the Lagrangian tracking of the solid phase. A general 3D rigid body dynamics and an Absolute Nodal Coordinate Formulation (ANCF) are implemented to model rigid and flexible multibody dynamics. The two-way coupling of the fluid and solid phases is supported through use of Boundary Condition Enforcing (BCE) markers that capture the fluid-solid coupling forces by enforcing a no-slip boundary condition. The solid-solid short range interaction, which has a crucial impact on the small-scale behavior of fluid-solid mixtures, is resolved via a lubrication force model. The collective system states are integrated in time using an explicit, multi-rate scheme. To alleviate the heavy computational load, the overall algorithm leverages parallel computing on Graphics Processing Unit (GPU) cards. Performance and scaling analysis are provided for simulations scenarios involving one or multiple phases with up to tens of thousands of solid objects. The software implementation of the approach, called Chrono:Fluid, is part of the Chrono project and available as an open-source software.

Streszczenie

W pracy przedstawiono zarys jednolitego podejścia do bezpośredniej numerycznej symulacji problemów interakcji płyn – ciało stałe (FSI) z wykorzystaniem wielowĄtkowej wysokowydajnej techniki obliczeniowej (HPC) o wielkiej skali. Algorytm symulacji opiera się na rozszerzonej metodzie hydrodynamiki czĄstek gładkich (XSPH), która opisuje przepływ płynu w formalizmie Lagrange'a zgodnym z metodĄ Lagrange'a śledzenia fazy stałej. W celu modelowania sztywnego i elastycznego układu wielu ciał implementowano ogólnĄ, trójwymiarowĄ dynamikę ciała sztywnego i zastosowano sformułowanie bezwzględnych współrzędnych węzłowych (ANCF). Dwukierunkowe sprzęŻenie między płynem i fazĄ stałĄ jest zamodelowane przez uŻycie znaczników wymuszenia warunków brzegowych (BCE) które oddajĄ działanie sił sprzęŻenia między płynem a ciałem stałym wymuszajĄc brak poślizgu w warunkach brzegowych. Problem interakcji bliskiego zakresu między płynem i ciałem stałym, która ma decydujĄcy wpływ na zachowanie w małej skali mieszanin płynów i ciał stałych, rozwiĄzano przy pomocy modelu sił smarowania. Stany systemu zbiorczego sĄ integrowane w czasie przy uŻyciu jawnego, wieloszybkościowego schematu. By zmniejszyć wielkie obciĄŻenie obliczeniowe, w algorytmie ogólnym połoŻono nacisk na obliczenia równoległe w kartach procesorów graficznych (GPU). W pracy przedstawiono analizę wydajności i skalowania dla scenariuszy symulacji obejmujĄcych jednĄ lub wiele faz przy liczbie obiektów stałych sięgajĄcej dziesiĄtek tysięcy. Implementacja oprogramowania przedstawionej metody, o nazwie Chrono: Fluid, jest częściĄ projektu Chrono i jest udostępniona do uŻytku nieodpłatnego.

Key words:: fluid-solid interaction; high performance computing; smoothed particle hydrodynamics; rigid body dynamics; flexible body dynamics

References

  • [1] Anitescu M., Hart G.D.: A constraint-stabilized timestepping approach for rigid multibody dynamics with joints, contact and friction. International Journal for Numerical Methods in Engineering 60(14), 2335–2371 (2004).

  • [2] Atkinson K.: An introduction to numerical analysis. John Wiley and Sons, USA (1989).

  • [3] Benz W.: Smoothed particle hydrodynamics: A review. In: Proceedings of the NATO Advanced Research Workshop on The Numerical Modelling of Nonlinear Stellar Pulsations Problems and Prospects, Les Arcs, France, March 20-24. Kluwer Academic Publishers (1986).

  • [4] Chrono::Fluid: An Open Source Engine for Fluid-Solid Interaction (2014). http://armanpazouki.github.io/chrono-fluid/

  • [5] Cleary P.W.: Modelling confined multi-material heat and mass flows using SPH. Applied Mathematical Modelling 22(12), 981–993 (1998). [Crossref]

  • [6] Colagrossi A., Landrini M.: Numerical simulation of interfacial flows by smoothed particle hydrodynamics. Journal of Computational Physics 191(2), 448–475 (2003).

  • [7] Dilts G.: Moving-least-squares-particle hydrodynamics–I. consistency and stability. International Journal for Numerical Methods in Engineering 44(8), 1115–1155 (1999).

  • [8] Ding E.J., Aidun C.K.: Extension of the lattice-Boltzmann method for direct simulation of suspended particles near contact. Journal of statistical physics 112(3-4), 685–708 (2003). [Crossref]

  • [9] Gerstmayr J., Shabana A.: Analysis of thin beams and cables using the absolute nodal coordinate formulation. Nonlinear Dynamics 45(1), 109–130 (2006). [Crossref]

  • [10] Haug E.: Computer aided kinematics and dynamics of mechanical systems. Allyn and Bacon Boston (1989).

  • [11] Hoberock J., Bell N.: Thrust: C++ template library for CUDA. http://thrust.github.com/

  • [12] Hu W., Tian Q., Hu H.: Dynamic simulation of liquid-filled flexible multibody systems via absolute nodal coordinate formulation and SPH method. Nonlinear Dynamics pp. 1–19 (2013).

  • [13] Kruggel-Emden H., Simsek E., Rickelt S., Wirtz S., Scherer V.: Review and extension of normal force models for the discrete element method. Powder Technology 171(3), 157–173 (2007).

  • [14] Kruggel-Emden H., Wirtz S., Scherer V.: A study on tangential force laws applicable to the discrete element method (DEM) for materials with viscoelastic or plastic behavior. Chemical Engineering Science 63(6), 1523–1541 (2008). [Crossref] [Web of Science]

  • [15] Ladd A.J.: Sedimentation of homogeneous suspensions of non-Brownian spheres. Physics of Fluids 9, 491 (1997). [Crossref]

  • [16] Liu M.B., Liu G.R.: Smoothed particle hydrodynamics (SPH): An overview and recent developments. Archives of Computational Methods in Engineering 17(1), 25–76 (2010). [Web of Science] [Crossref]

  • [17] Lucy L.B.: A numerical approach to the testing of the fission hypothesis. The Astronomical Journal 82, 1013–1024 (1977). [Crossref]

  • [18] Micikevicius P.: GPU performance analysis and optimization (2014). http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-Analysis. pdf

  • [19] Monaghan J.J.: An introduction to SPH. Computer Physics Communications 48(1), 89–96 (1988). [Crossref]

  • [20] Monaghan J.J.: On the problem of penetration in particle methods. Journal of Computational Physics 82(1), 1–15 (1989). [Crossref]

  • [21] Monaghan J.J.: Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics. 30, 543–574 (1992). [Web of Science]

  • [22] Monaghan J.J.: Smoothed particle hydrodynamics. Reports on Progress in Physics 68(1), 1703–1759 (2005). [Crossref]

  • [23] Monaghan J.J., Gingold R.: Shock simulation by the particle method SPH. Journal of Computational Physics 52(2), 374–389 (1983). [Crossref]

  • [24] Morris J., Fox P., Zhu Y.: Modeling low Reynolds number incompressible flows using SPH. Journal of Computational Physics 136(1), 214–226 (1997).

  • [25] Negrut D., Tasora A., Mazhar H., Heyn T., Hahn P.: Leveraging parallel computing in multi-body dynamics. Multibody System Dynamics 27(1), 95–117 (2012). [Crossref] [Web of Science]

  • [26] NVIDIA: CUDA developer zone (2014). https://developer. nvidia.com/cuda-downloads.

  • [27] NVIDIA: NVIDIA GeForce GTX 680 (2014). http://www.geforce.com/Active/en?US/en?US/ pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf.

  • [28] Pazouki A., Mazhar H., Negrut D.: Parallel collision detection of ellipsoids with applications in large scale multibody dynamics. Mathematics and Computers in Simulation 82(5), 879–894 (2012). URL http://www.sciencedirect. com/science/article/pii/S0378475412000080 [Crossref] [Web of Science]

  • [29] Pazouki A., Negrut D.: Direct simulation of lateral migration of buoyant particles in channel flow using GPU computing. In: Proceedings of the 32nd Computers and Information in Engineering Conference, CIE32, August 12-15, Chicago, IL, USA. American Society of Mechanical Engineers (2012).

  • [30] Pazouki A., Negrut D.: A numerical study of the effect of particle properties on the radial distribution of suspensions in pipe flow. Submitted to International Journal of Multiphase Flow (2014).

  • [31] Pazouki A., Serban R., Negrut D.: A Lagrangian-Lagrangian framework for the simulation of rigid and deformable bodies in fluid. Multibody Dynamics: Computational Methods and Applications, ISBN: 9783319072593, Springer, 2014, pp. 33-52.

  • [32] SBEL: Vimeo page (2014). https://vimeo.com/uwsbel.

  • [33] Schörgenhumer M., Gruber P.G., Gerstmayr J.: Interaction of flexible multibody systems with fluids analyzed by means of smoothed particle hydrodynamics. Multibody System Dynamics pp. 1–24 (2013). [Web of Science]

  • [34] Schwab A., Meijaard J.: Comparison of three-dimensional flexible beam elements for dynamic analysis: finite element method and absolute nodal coordinate formulation. In: Proceedings of the ASME 2005 IDETC/CIE. Orlando, Florida (2005).

  • [35] Shabana A.: Flexible multibody dynamics: Review of past and recent developments. Multi-body System Dynamics 1, 339–348 (1997).

  • [36] Shabana A.: Dynamics of Multibody Systems. Cambridge University Press, New York (2005).

About the article

Published Online: 2014-08-15


Citation Information: Archive of Mechanical Engineering, ISSN (Online) 2300-1895, DOI: https://doi.org/10.2478/meceng-2014-0014. Export Citation

© 2014 Arman Pazouki et. al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in