Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archive of Mechanical Engineering

The Journal of Committee on Machine Building of Polish Academy of Sciences

4 Issues per year


CiteScore 2016: 0.44

SCImago Journal Rank (SJR) 2016: 0.162
Source Normalized Impact per Paper (SNIP) 2016: 0.459

Open Access
Online
ISSN
2300-1895
See all formats and pricing
More options …

Helicopter Rotor Sailing by Non-Smooth Dynamics Co-Simulation

Kosymulacja Niegładkiej Dynamiki Łopat Helikoptera w Warunkach Żeglowania

Matteo Fancello
  • Politecnico di Milano, Dipartimento di Scienze e Tecnologie Aerospaziali, via La Masa 34, 20156 Milano - Italy
  • Email:
/ Marco Morandini
  • Politecnico di Milano, Dipartimento di Scienze e Tecnologie Aerospaziali, via La Masa 34, 20156 Milano - Italy
  • Email:
/ Pierangelo Masarati
  • Politecnico di Milano, Dipartimento di Scienze e Tecnologie Aerospaziali, via La Masa 34, 20156 Milano - Italy
  • Email:
Published Online: 2014-08-15 | DOI: https://doi.org/10.2478/meceng-2014-0015

Abstract

This paper presents the application of a co-simulation approach for the simulation of frictional contact in general-purpose multibody dynamics to a rotorcraft dynamics problem. The proposed approach is based on the co-simulation of a main problem, which is described and solved as a set of differential algebraic equations, with a subproblem that is characterized by nonsmooth dynamics events and solved using a timestepping technique. The implementation and validation of the formulation is presented. The method is applied to the analysis of the droop and anti-flap contacts of helicopter rotor blades. Simulations focusing on the problem of blade sailing are conducted to understand the behavior and assess the validity of the method. For this purpose, the results obtained using a contact model based on Hertzian reaction forces at the interface are compared with those of the proposed approach.

Streszczenie

W artykule przedstawiono problem dynamiki wiropłatu rozwiĄzany przy zastosowaniu ogólnej metody kosymulacji uŻywanej do symulacji kontaktu ciernego w dynamice układu wieloczłonowego. Proponowane podejście jest oparte na kosymulacji głównego problemu, opisanego i rozwiĄzanego jako układ algebraicznych równań róŻniczkowych wspólnie z podproblemem, który jest scharakteryzowany przez zdarzenia niegładkiej dynamiki i rozwiĄzany technikĄ kroków czasowych. Zaprezentowano implementację i walidację takiego sformułowania. Metodę zastosowano do analizy zwisu i łopotania łopatek wirnika helikoptera. By zrozumieć działanie metody i ocenić jej przydatność przeprowadzono symulacje dotyczĄce zachowania wirnika helikoptera w warunkach Żeglugi. Dla oceny metody porównano wyniki uzyskane przy uŻyciu modelu kontaktowego wykorzystujĄcego siły reakcji Hertza z wynikami uzyskanymi w proponowanym podejściu.

Key words:: multibody dynamics; nonsmooth dynamics; contact; timestepping methods; co-simulation

References

  • [1] Hunt K. H., Crossley F. R. E.: Coefficient of restitution interpreted as damping in vi-broimpact. Journal of Applied Mechanics, Transactions ASME, 42(2), 440-445, 1975. doi:10.1115/1.3423596.CrossrefGoogle Scholar

  • [2] Flores P., Machado M., Silva M. T., and Martins J. M.: On the continuous contact force models for soft materials in multibody dynamics. Multibody System Dynamics, 25(3), 357-375, March 2011. doi:10.1007/s11044-010-9237-4.CrossrefGoogle Scholar

  • [3] Moreau J. J.: Unilateral contact and dry friction in finite freedom dynamics. Nonsmooth mechanics and applications, CISM, Courses and lectures, Springer-Verlag, 302, 1-82, 1988.Google Scholar

  • [4] Jean M.: The nonsmooth contact dynamics method. Comput. Meth. Appl. Mech. Engng., 177(3-4), 235-257, 1999. doi:10.1016/S0045-7825(98)00383-1.CrossrefGoogle Scholar

  • [5] Acary V., and Brogliato B.: Numerical Methods for Nonsmooth Dynamical Systems. Springer, 2008.Web of ScienceGoogle Scholar

  • [6] Masarati P., Morandini M., and Mantegazza P.: An efficient formulation for general-purpose multibody/multiphysics analysis. J. of Computational and Nonlinear Dynamics, in press. doi:10.1115/1.4025628.CrossrefGoogle Scholar

  • [7] Fancello M., Masarati P., and Morandini M.: Smooth/non-smooth dynamics co-simulation of helicopter rotor sailing. In Multibody 2013, Zagreb, Croatia, July 1-4 2013.Google Scholar

  • [8] Fancello M., Masarati P., and Morandini M.: Adding non-smooth analysis capabilities to general-purpose multibody dynamics by co-simulation. In Proceedings of ASME IDETC/CIE, Portland, OR, August 4-7 2013. DETC2013-12208.Google Scholar

  • [9] Lemke C. E.: Bimatrix equilibrium points and mathematical programming. Management Science, 11(7), 681-689, May 1965. doi:10.1287/mnsc.11.7.681.CrossrefGoogle Scholar

  • [10] Chen Q., Acary V., Virlez G., and Brüls O.: A newmark-type integrator for flexible systems considering nonsmooth unilateral constraints. In P. Eberhard and P. Ziegler, editors, 2nd Joint International Conference on Multibody System Dynamics, Stuttgart, Germany, May 29-June 1 2012.Google Scholar

  • [11] Masarati P., Lanz M., and Mantegazza P.: Multistep integration of ordinary, stiff and differential-algebraic problems for multibody dynamics applications. In XVI Congresso Nazionale AIDAA, pages 71.1-10, Palermo, 24-28 September 2001.Google Scholar

  • [12] Klarbring A.: A mathematical programming approach to three-dimensional contact problems with friction. Comput. Meth. Appl. Mech. Engng., 58(2), 175-200, 1986. doi:10.1016/0045-7825(86)90095-2.CrossrefGoogle Scholar

  • [13] Newman S.: The phenomenon of helicopter rotor blade sailing. Proc. IMechE, Part G: J. Aerospace Engineering, 213(6), 347-363, 1999. doi:10.1243/0954410991533070.CrossrefGoogle Scholar

  • [14] Geyer William P., Smith Edward C., and Keller Jonathan A.: Aeroelastic analysis of transient blade dynamics during shipboard engage/disengage operations. Journal of Aircraft, 35(3), 445-453, 1998. doi:10.2514/2.2317.CrossrefGoogle Scholar

  • [15] Bottasso C. L., and Bauchau O. A.: Multibody modeling of engage and disengage operations of helicopter rotors. Journal of the American Helicopter Society, 46(4), 290-300, 2001. doi:10.4050/JAHS.46.290.CrossrefGoogle Scholar

  • [16] Kang H., and He C.: Modeling and simulation of rotor engagement and disengagement during shipboard operations. In American Helicopter Society 60th Annual Forum, pages 315-324, Baltimore, MD, June 7-10 2004.Google Scholar

  • [17] Wall A. S., Afagh F. F., Langlois R. G., and Zan S. J.: Modeling helicopter blade sailing: Dynamic formulation and validation. Journal of Applied Mechanics, 75(6), 061004.1-10, 2008. doi:10.1115/1.2957599.Web of ScienceCrossrefGoogle Scholar

  • [18] Quaranta G., Bindolino G., Masarati P., and Mantegazza P.: Toward a computational framework for rotorcraft multi-physics analysis: Adding computational aerodynamics to multibody rotor models. In 30th European Rotorcraft Forum, pages 18.1-14, Marseille, France, 14-16 September 2004.Google Scholar

  • [19] Muscarello V., Masarati P., and Quaranta G.: Multibody analysis of rotorcraft-pilot coupling. In P. Eberhard and P. Ziegler, editors, 2nd Joint International Conference on Multibody System Dynamics, Stuttgart, Germany, May 29-June 1 2012.Google Scholar

  • [20] Bousman William G., Young C., Toulmay F., Gilbert Neil E., Strawn Roger C., Miller Judith V., Maier Thomas H., Costes M., and Beaumier P.: A comparison of lifting-line and CFD methods with flight test data from a research Puma helicopter. TM 110421, NASA, October 1996.Google Scholar

  • [21] Ghiringhelli G. L., Masarati P., and Mantegazza P.: A multi-body implementation of finite volume beams. AIAA Journal, 38(1), 131-138, January 2000. doi:10.2514/2.933.CrossrefGoogle Scholar

  • [22] García de Jalón J., and Bayo E.: Kinematic and Dynamic Simulation of Multibody Systems: the Real Time Challenge. Springer-Verlag, New York, 1994.Google Scholar

  • [23] Bayo E., García de Jalón J., and Serna M. A.: A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systems. Comput. Meth. Appl. Mech. Engng., 71(2), 183-195, 1988. doi:10.1016/0045-7825(88)90085-0.CrossrefGoogle Scholar

  • [24] Goldsmith W.: Impact, The Theory and Physical Behaviour of Colliding Solids. Edward Arnold Ltd, London, England, 1960.Google Scholar

About the article

Published Online: 2014-08-15


Citation Information: Archive of Mechanical Engineering, ISSN (Online) 2300-1895, DOI: https://doi.org/10.2478/meceng-2014-0015.

Export Citation

© 2014 Matteo Fancello et. al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in