Jump to ContentJump to Main Navigation
Show Summary Details

Archive of Mechanical Engineering

The Journal of Committee on Machine Building of Polish Academy of Sciences

4 Issues per year


SCImago Journal Rank (SJR) 2015: 0.178
Source Normalized Impact per Paper (SNIP) 2015: 0.453
Impact per Publication (IPP) 2015: 0.314

Open Access
Online
ISSN
2300-1895
See all formats and pricing

Real-Time Human in the Loop MBS Simulation in the Fraunhofer Robot-Based Driving Simulator

Symulacja w Czasie Rzeczywistym układu Wieloczłonowego z Człowiekiem w Pętli w Opartym na Robocie Symulatorze Kierowania Pojazdem Opracowanym w Instytucie Fraunhofera

Michael Kleer
  • Fraunhofer Institut for Industrial Mathematics ITWM, Fraunhofer Platz 1, 67663, Kaiserslautern, Germany
  • Email:
/ Andrey Gizatullin
  • Fraunhofer Institut for Industrial Mathematics ITWM, Fraunhofer Platz 1, 67663, Kaiserslautern, Germany
  • Email:
/ Klaus Dreßler
  • Fraunhofer Institut for Industrial Mathematics ITWM, Fraunhofer Platz 1, 67663, Kaiserslautern, Germany
  • Email:
/ Steffen Müller
  • Fraunhofer Institut for Industrial Mathematics ITWM, Fraunhofer Platz 1, 67663, Kaiserslautern, Germany
  • TU Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
  • Email:
Published Online: 2014-08-15 | DOI: https://doi.org/10.2478/meceng-2014-0016

Abstract

The paper encompasses the overview of hardware architecture and the systems characteristics of the Fraunhofer driving simulator. First, the requirements of the real-time model and the real-time calculation hardware are defined and discussed in detail. Aspects like transport delay and the parallel computation of complex real-time models are presented. In addition, the interfacing of the models with the simulator system is shown. Two simulator driving tests, including a fully interactive rough terrain driving with a wheeled excavator and a test drive with a passenger car, are set to demonstrate system characteristics. Furthermore, the simulator characteristics of practical significance, such as simulator response time delay, simulator acceleration signal bandwidth obtained from artificial excitation and from the simulator driving test, will be presented and discussed.

Streszczenie

Artykuł zawiera przeglĄd architektury sprzętowej i charakterystyk systemowych symulatora kierowania pojazdem opracowanego w Instytucie Fraunhofera. Na wstępie zdefiniowano i przedyskutowano szczegółowo wymagania dla modelu czasu rzeczywistego i obliczeń w czasie rzeczywistym. Zaprezentowano takie aspekty systemu, jak opóźnienie transportu i obliczenia równoległe złoŻonych modeli czasu rzeczywistego. Pokazano ponadto działanie interfejsu pomiędzy modelem i systemem symulatora. W celu zademonstrowania charakterystyk systemu wykonano dwa testy symulatora: w pełni interaktywny test kierowania koparkĄ kołowĄ w nierównym terenie, oraz test kierowania samochodem pasaŻerskim. Co więcej, charakterystyki symulatora majĄce znaczenie praktyczne, takie jak opóźnienie czasowe odpowiedzi symulatora, pasmo sygnału przyspieszenia symulatora wyznaczone przy sztucznym pobudzeniu i z testu kierowania pojazdem zostały zaprezentowane i przedyskutowane.

Key words:: driving simulator; human in the loop; real-time MBS simulation

References

  • [1] Merlet J.P.: Parallel Robots, Springer, ISBN 1-4020-4132-24.

  • [2] Robuffo Giordano P., Masone C., Tesch J., Breidt M., Pollini L., Bülthoff H. H.: A Novel Framework for Closed-Loop Robotic Motion Simulation Part I: Inverse Kinematics Design, In IEEE International Conference on Robotics and Automation, pages 3876-3883, Anchorage, 2010.

  • [3] European Patent Specification EP 1 289 616 B1.’ Ride Apparatus, 2004.

  • [4] Kleer M., Hermanns O., Dreβler K., and Müller S.: Driving simulations for commercial vehicles- A technical overview of a robot based approach, In S. Espié, A. Kemeny and F. Mérienne, editors, Proceedings of the driving simulation conference Europe, pages 223-232, Paris, 2012.

  • [5] Kleer M., Hermanns O., and Müller S.: Konzeption eines Fahrsimulators für die Nutzfahrzeug-industrie auf Basis eines Industrieroboters, In K. Berns, C. Schindler, K. Dreβler, B. Jörg, R. Kalmar and G. Zoylinski, editors, Proceedings of the 2nd commercial vehicle technology symposium, pages 49-58, Kaiserslautern, 2012.

  • [6] Heiβing B.: Fahrwerkhandbuch. Vieweg Teubner. ISBN 978-3-8348-0821-9, 2011.

  • [7] Reid L.D., Nahon Reid M. A.: Flight Simulation Motion-Base Drive Algortihms Part 1: Developing and Testing the Equations, ISBN 0082-5255. UTIAS Report No. 296, 1985.

  • [8] Aubert H.: Physiologische Studien über die Orientierung, Verlag der II. Laupp'schen Buch-handlung, Tübingen, 1888.

  • [9] Stoner H. A., Fischer D. L., and Mollenhauer M., Jr.: Simulator and Scenario Factors Influencing Simulator Sickness, in D.L. Fischer, M. Rizzo, J. K. Caird and J. D. Lee, Handbook of driving simulation for engineering, medicine, and psychology, pages 14/1 - 14/23, 2011.

  • [10] Berthoz A., Bles W., Bülthoff H. H. et al.: Motion Scaling for High-Performance Driving Simulators, In IEEE Transactions on Human-Machine Systems, Vol. 43, No. 3, 2013. [Web of Science]

  • [11] Spong M.W., Hutchinson S., Vidyasagar M.: Robot Modeling and Control, John Wiley & Sons. ISBN 978-0471649908, 2005.

  • [12] Burger M., Bäcker M., Gallrein A., Kleer M.: Integration eines detaillierten, flexiblen Reifen-modells in den Fraunhofer Fahrsimulator, 14. Internationale VDI-Tagung, Reifen-Fahrwerk-Fahrbahn, VDI-Berichte Nr. 2211, page 167, Hannover, 2013.

  • [13] CDTire - Scalable tire model for full vehicle simulations, 2013. Http://www.itwm. fraunhofer.de/en/departments/mdf/services-and-products/cdtire.html

About the article

Published Online: 2014-08-15


Citation Information: Archive of Mechanical Engineering, ISSN (Online) 2300-1895, DOI: https://doi.org/10.2478/meceng-2014-0016. Export Citation

© 2014 Michael Kleer et. al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Comments (0)

Please log in or register to comment.
Log in