Jump to ContentJump to Main Navigation
Show Summary Details

Archive of Mechanical Engineering

The Journal of Committee on Machine Building of Polish Academy of Sciences

4 Issues per year


SCImago Journal Rank (SJR) 2015: 0.178
Source Normalized Impact per Paper (SNIP) 2015: 0.453
Impact per Publication (IPP) 2015: 0.314

Open Access
Online
ISSN
2300-1895
See all formats and pricing




An Enhanced Tire Model for Dynamic Simulation based on Geometrically Exact Shells

Michael Roller
  • Fraunhofer Institute for Industrial Mathematics, Fraunhofer Platz 1, 67663 Kaiserslautern, Germany
  • :
/ Peter Betsch
  • Institute of Mechanics, Karlsruhe Institute of Technology (KIT), Otto-Ammann-Platz 9, 76131 Karlsruhe, Germany
  • :
/ Axel Gallrein
  • Fraunhofer Institute for Industrial Mathematics, Fraunhofer Platz 1, 67663 Kaiserslautern, Germany
  • :
/ Joachim Linn
  • Fraunhofer Institute for Industrial Mathematics, Fraunhofer Platz 1, 67663 Kaiserslautern, Germany
  • :
Published Online: 2016-06-29 | DOI: https://doi.org/10.1515/meceng-2016-0016

Abstract

In the present work, a tire model is derived based on geometrically exact shells. The discretization is done with the help of isoparametric quadrilateral finite elements. The interpolation is performed with bilinear Lagrangian polynomials for the mid-surface as well as for the director field. As time stepping method for the resulting differential algebraic equation a backward differentiation formula is chosen. A multilayer material model for geometrically exact shells is introduced, to describe the anisotropic behavior of the tire material. To handle the interaction with a rigid road surface, a unilateral frictional contact formulation is introduced. Therein a special surface to surface contact element is developed, which rebuilds the shape of the tire.

Keywords: geometrically exact shell; flexible multibody dynamics; tire modelling; unilateral contact

REFERENCES

  • [1] Betsch P., Sänger N.: On the use of geometrically exact shells in a conserving framework for flexible multibody dynamics. Computer Methods in Applied Mechanics and Engineering, 198(17), 1609-1630, 2009. [Web of Science]

  • [2] Bonet J.: Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, 1997.

  • [3] Brenan K.E., Campbell S.L., Petzold L.R.: Numerical solution of initial-value problems in differential-algebraic equations, vol. 14. Siam, 1996.

  • [4] Chapelle D., Bathe K.-J. et al.: The finite element analysis of shells: fundamentals. Springer, 2011.

  • [5] Farin G.E.: Curves and surfaces for computer-aided geometric design: a practical code. Elsevier, 1996.

  • [6] Gallrein A., Bäcker M., Gizatullin A.: Structural MBD tire models: Closing the gap to structural analysis-history and future of parameter identification. SAE Technical Paper, 2013.

  • [7] Giannakopoulos A.: The return mapping method for the integration of friction constitutive relations. Computers & structures, 32(1), 157-167, 1989.

  • [8] Halpin J.C., Kardos J.L.: The Halpin-Tsai equations: A review. Polymer Engineering & Science, 16(5), 344-352, 1976. [Crossref]

  • [9] Jones R.M.: Mechanics of composite materials. CRC Press, 1998.

  • [10] Lugner P., Plöchl M.: Tyre model performance test: first experiences and results. Vehicle System Dynamics, 43(1), 48-62, 2005. [Crossref]

  • [11] Nagata T.: Simple local interpolation of surfaces using normal vectors. Computer Aided Geometric Design, 22(4), 327-347, 2005. [Crossref]

  • [12] Neto D., Oliveira M., Menezes L., Alves J.: Improving nagata patch interpolation applied for tool surface description in sheet metal forming simulation. Computer-Aided Design, 45(3), 639-656, 2013. [Crossref] [Web of Science]

  • [13] Pacejka H.B., Bakker E.: The magic formula tyre model. Vehicle System Dynamics, 21(S1), 1-18, 1992. [Crossref]

  • [14] Poldneff M.J., Heinstein M.W.: Computational mechanics of rubber and tires. Modeling and Simulation in Polymers, p. 385-403, 2010.

  • [15] Roller M., Betsch P., Gallrein A., Linn J.: On the use of geometrically exact shells for dynamic tire simulation. Multibody Dynamics, p. 205-236. Springer, 2014.

  • [16] Roller M.: Dynamische Reifensimulation mit geometrisch exakten Schalen (Dynamic tire simulation with geometrically exact shells). PhD Thesis, Karlsruhe Institute of Technology, 2016 (in German).

  • [17] Simo J.C., Fox D.D.: On a stress resultant geometrically exact shell model. Part I: Formulation and optimal parametrization. Computer Methods in Applied Mechanics and Engineering, 72(3), 267-304, 1989. [Crossref]

  • [18] Wriggers P.: Finite element algorithms for contact problems. Archives of Computational Methods in Engineering, 2(4), 1-49, 1995. [Crossref] [Web of Science]

  • [19] Wriggers P.: Nonlinear finite element methods, vol. 4. Springer, 2008.

  • [20] Wriggers P., Laursen T.A.: Computational contact mechanics. Springer, 2008.


Received: 2015-09-16

Accepted: 2016-06-07

Published Online: 2016-06-29

Published in Print: 2016-06-01


Citation Information: Archive of Mechanical Engineering. Volume 63, Issue 2, Pages 277–295, ISSN (Online) 2300-1895, DOI: https://doi.org/10.1515/meceng-2016-0016, June 2016

© 2016 Michael Roller et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Comments (0)

Please log in or register to comment.