Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Archive of Mechanical Engineering

The Journal of Committee on Machine Building of Polish Academy of Sciences

4 Issues per year


CiteScore 2016: 0.44

SCImago Journal Rank (SJR) 2016: 0.162
Source Normalized Impact per Paper (SNIP) 2016: 0.459

Open Access
Online
ISSN
2300-1895
See all formats and pricing
More options …

An Enhanced Tire Model for Dynamic Simulation based on Geometrically Exact Shells

Michael Roller
  • Fraunhofer Institute for Industrial Mathematics, Fraunhofer Platz 1, 67663 Kaiserslautern, Germany
  • Email:
/ Peter Betsch
  • Institute of Mechanics, Karlsruhe Institute of Technology (KIT), Otto-Ammann-Platz 9, 76131 Karlsruhe, Germany
  • Email:
/ Axel Gallrein
  • Fraunhofer Institute for Industrial Mathematics, Fraunhofer Platz 1, 67663 Kaiserslautern, Germany
  • Email:
/ Joachim Linn
  • Fraunhofer Institute for Industrial Mathematics, Fraunhofer Platz 1, 67663 Kaiserslautern, Germany
  • Email:
Published Online: 2016-06-29 | DOI: https://doi.org/10.1515/meceng-2016-0016

Abstract

In the present work, a tire model is derived based on geometrically exact shells. The discretization is done with the help of isoparametric quadrilateral finite elements. The interpolation is performed with bilinear Lagrangian polynomials for the mid-surface as well as for the director field. As time stepping method for the resulting differential algebraic equation a backward differentiation formula is chosen. A multilayer material model for geometrically exact shells is introduced, to describe the anisotropic behavior of the tire material. To handle the interaction with a rigid road surface, a unilateral frictional contact formulation is introduced. Therein a special surface to surface contact element is developed, which rebuilds the shape of the tire.

Keywords: geometrically exact shell; flexible multibody dynamics; tire modelling; unilateral contact

REFERENCES

  • [1] Betsch P., Sänger N.: On the use of geometrically exact shells in a conserving framework for flexible multibody dynamics. Computer Methods in Applied Mechanics and Engineering, 198(17), 1609-1630, 2009.Web of ScienceGoogle Scholar

  • [2] Bonet J.: Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, 1997.Google Scholar

  • [3] Brenan K.E., Campbell S.L., Petzold L.R.: Numerical solution of initial-value problems in differential-algebraic equations, vol. 14. Siam, 1996.Google Scholar

  • [4] Chapelle D., Bathe K.-J. et al.: The finite element analysis of shells: fundamentals. Springer, 2011.Google Scholar

  • [5] Farin G.E.: Curves and surfaces for computer-aided geometric design: a practical code. Elsevier, 1996.Google Scholar

  • [6] Gallrein A., Bäcker M., Gizatullin A.: Structural MBD tire models: Closing the gap to structural analysis-history and future of parameter identification. SAE Technical Paper, 2013.Google Scholar

  • [7] Giannakopoulos A.: The return mapping method for the integration of friction constitutive relations. Computers & structures, 32(1), 157-167, 1989.Google Scholar

  • [8] Halpin J.C., Kardos J.L.: The Halpin-Tsai equations: A review. Polymer Engineering & Science, 16(5), 344-352, 1976.CrossrefGoogle Scholar

  • [9] Jones R.M.: Mechanics of composite materials. CRC Press, 1998.Google Scholar

  • [10] Lugner P., Plöchl M.: Tyre model performance test: first experiences and results. Vehicle System Dynamics, 43(1), 48-62, 2005.CrossrefGoogle Scholar

  • [11] Nagata T.: Simple local interpolation of surfaces using normal vectors. Computer Aided Geometric Design, 22(4), 327-347, 2005.CrossrefGoogle Scholar

  • [12] Neto D., Oliveira M., Menezes L., Alves J.: Improving nagata patch interpolation applied for tool surface description in sheet metal forming simulation. Computer-Aided Design, 45(3), 639-656, 2013.CrossrefWeb of ScienceGoogle Scholar

  • [13] Pacejka H.B., Bakker E.: The magic formula tyre model. Vehicle System Dynamics, 21(S1), 1-18, 1992.CrossrefGoogle Scholar

  • [14] Poldneff M.J., Heinstein M.W.: Computational mechanics of rubber and tires. Modeling and Simulation in Polymers, p. 385-403, 2010.Google Scholar

  • [15] Roller M., Betsch P., Gallrein A., Linn J.: On the use of geometrically exact shells for dynamic tire simulation. Multibody Dynamics, p. 205-236. Springer, 2014.Google Scholar

  • [16] Roller M.: Dynamische Reifensimulation mit geometrisch exakten Schalen (Dynamic tire simulation with geometrically exact shells). PhD Thesis, Karlsruhe Institute of Technology, 2016 (in German).Google Scholar

  • [17] Simo J.C., Fox D.D.: On a stress resultant geometrically exact shell model. Part I: Formulation and optimal parametrization. Computer Methods in Applied Mechanics and Engineering, 72(3), 267-304, 1989.CrossrefGoogle Scholar

  • [18] Wriggers P.: Finite element algorithms for contact problems. Archives of Computational Methods in Engineering, 2(4), 1-49, 1995.CrossrefWeb of ScienceGoogle Scholar

  • [19] Wriggers P.: Nonlinear finite element methods, vol. 4. Springer, 2008.Google Scholar

  • [20] Wriggers P., Laursen T.A.: Computational contact mechanics. Springer, 2008.Google Scholar

About the article

Received: 2015-09-16

Accepted: 2016-06-07

Published Online: 2016-06-29

Published in Print: 2016-06-01


Citation Information: Archive of Mechanical Engineering, ISSN (Online) 2300-1895, DOI: https://doi.org/10.1515/meceng-2016-0016.

Export Citation

© 2016 Michael Roller et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in