Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Medicine

formerly Central European Journal of Medicine

Editor-in-Chief: Darzynkiewicz, Zbigniew

1 Issue per year


IMPACT FACTOR 2016 (Open Medicine): 0.294
IMPACT FACTOR 2016 (Central European Journal of Medicine): 0.116

CiteScore 2016: 0.28

SCImago Journal Rank (SJR) 2015: 0.140
Source Normalized Impact per Paper (SNIP) 2015: 0.154

Open Access
Online
ISSN
2391-5463
See all formats and pricing
More options …
Volume 3, Issue 1

Issues

Genetic effects, gene-lifestyle interactions, and type 2 diabetes

Lu Qi
  • Departments of Nutrition and Epidemiology, Harvard School of Public Health, and Channing Laboratory, Boston, Massachusetts, 02115, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2008-03-01 | DOI: https://doi.org/10.2478/s11536-007-0051-1

Abstract

Type 2 diabetes has become a major public health challenge worldwide. It is now widely accepted that genetic components affect the development of type 2 diabetes, in concert with environmental factors such as lifestyle and diet. Traditional linkage mapping, positional cloning, and candidate gene-based association studies have identified a few genetic variants in genes such as TCF7L2, PPARG, and KCNJ11 that are reproducibly related to the risk of type 2 diabetes. To date, about ten genome-wide association (GWA) studies have been published. These studies discovered new susceptibility genes for type 2 diabetes and provide novel insight into the diabetes etiology. In addition, data especially from lifestyle intervention trials display promising evidence that the genetic variants may interact with changes of dietary habit and physical activity in predisposing to type 2 diabetes. The gene-lifestyle interactions merit extensive exploration in large, prospective studies. The findings from these areas will substantially improve the prediction and prevention of type 2 diabetes.

Keywords: Genetics; Gene-environment interactions; And type 2 diabetes

  • [1] Wild S., Roglic G., Green A., Sicree R., King H., Global prevalence of diabetes: estimates for the year 2000 and projections for 2030, Diabetes Care, 2004, 27, 1047–1053 http://dx.doi.org/10.2337/diacare.27.5.1047CrossrefGoogle Scholar

  • [2] Sladek R., Rocheleau G., Rung J., Dina C., Shen L., Serre D., et al., A genome-wide association study identifies novel risk loci for type 2 diabetes, Nature, 2007, 445, 881–885 http://dx.doi.org/10.1038/nature05616CrossrefGoogle Scholar

  • [3] Scott L.J., Mohlke K.L., Bonnycastle L.L., Willer C.J., Li Y., Duren W.L., et al., A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants, Science, 2007, 316, 1341–1345 http://dx.doi.org/10.1126/science.1142382CrossrefGoogle Scholar

  • [4] Salonen J.T., Uimari P., Aalto J.M., Pirskanen M., Kaikkonen J., Todorova B., et al., Type 2 diabetes whole-genome association study in four populations: the DiaGen consortium, Am. J. Hum. Genet. 2007, 81, 338–345 http://dx.doi.org/10.1086/520599CrossrefGoogle Scholar

  • [5] Zeggini E., Weedon M.N., Lindgren C.M., Frayling T.M., Elliott K.S., Lango H., et al., Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes, Science, 2007, 316, 1336–1341 http://dx.doi.org/10.1126/science.1142364CrossrefGoogle Scholar

  • [6] Hunter D.J., Gene-environment interactions in human diseases, Nat. Rev. Genet., 2005, 6, 287–298 http://dx.doi.org/10.1038/nrg1578CrossrefGoogle Scholar

  • [7] Knowler W.C., Pettitt D.J., Savage P.J., Bennett P.H., Diabetes incidence in Pima indians: contributions of obesity and parental diabetes, Am. J. Epidemiol., 1981, 113, 144–156 Google Scholar

  • [8] Harris M.I., Hadden W.C., Knowler W.C., Bennett P.H., Prevalence of diabetes and impaired glucose tolerance and plasma glucose levels in U.S. population aged 20–74 yr., Diabetes, 1987, 36, 523–534 http://dx.doi.org/10.2337/diabetes.36.4.523CrossrefGoogle Scholar

  • [9] Mitchell B.D., Valdez R., Hazuda H.P., Haffner S.M., Monterrosa A., Stern M.P., Differences in the prevalence of diabetes and impaired glucose tolerance according to maternal or paternal history of diabetes, Diabetes Care, 1993, 16, 1262–1267 http://dx.doi.org/10.2337/diacare.16.9.1262CrossrefGoogle Scholar

  • [10] Thomas F., Balkau B., Vauzelle-Kervroedan F., Papoz L., Maternal effect and familial aggregation in NIDDM. The CODIAB Study. CODIAB-INSERMZENECA Study Group, Diabetes, 1994, 43, 63–67 http://dx.doi.org/10.2337/diabetes.43.1.63CrossrefGoogle Scholar

  • [11] De Silva S.N., Weerasuriya N., De Alwis N.M., De Silva M.W., Fernando D.J., Excess maternal transmission and familial aggregation of Type 2 diabetes in Sri Lanka. Diabetes Res. Clin. Pract. 2002, 58, 173–177 http://dx.doi.org/10.1016/S0168-8227(02)00152-3CrossrefGoogle Scholar

  • [12] Arfa I., Abid A., Malouche D., Ben Alaya N., Azegue T.R., Mannai I., et al., Familial aggregation and excess maternal transmission of type 2 diabetes in Tunisia, Postgrad. Med. J., 2007, 83, 348–351 http://dx.doi.org/10.1136/pgmj.2006.053744CrossrefGoogle Scholar

  • [13] Viswanathan M., McCarthy M.I., Snehalatha C., Hitman G.A., Ramachandran A., Familial aggregation of type 2 (non-insulin-dependent) diabetes mellitus in south India; absence of excess maternal transmission, Diabet. Med., 1996, 13, 232–237 http://dx.doi.org/10.1002/(SICI)1096-9136(199603)13:3<232::AID-DIA27>3.0.CO;2-7CrossrefGoogle Scholar

  • [14] Valdez R., Yoon P.W., Liu T., Khoury M.J., Family history and prevalence of diabetes in the US population: 6-year results from the National Health and Nutrition Examination Survey (NHANES, 1999 2004), Diabetes, 2007, (in press) Google Scholar

  • [15] Newman B., Selby J.V., King M.C., Slemenda C., Fabsitz R., Friedman G.D., Concordance for type 2 (non-insulin-dependent) diabetes mellitus in male twins, Diabetologia, 1987, 30, 763–768 http://dx.doi.org/10.1007/BF00275741CrossrefGoogle Scholar

  • [16] Barnett A.H., Eff C., Leslie R.D., Pyke D.A., Diabetes in identical twins. A study of 200 pairs, Diabetologia, 1981, 20, 87–93 http://dx.doi.org/10.1007/BF00262007CrossrefGoogle Scholar

  • [17] Gottlieb M.S., Root H.F., Diabetes mellitus in twins, Diabetes, 1968, 17, 693–704 PubMedCrossrefGoogle Scholar

  • [18] Kaprio J., Tuomilehto J., Koskenvuo M., Romanov K., Reunanen A., Eriksson J., et al., Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland, Diabetologia, 1992, 35, 1060–1067 http://dx.doi.org/10.1007/BF02221682CrossrefGoogle Scholar

  • [19] Poulsen P, Kyvik K.O., Vaag A., Beck-Nielsen H., Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance—a population-based twin study, Diabetologia, 1999, 42, 139–145 http://dx.doi.org/10.1007/s001250051131CrossrefGoogle Scholar

  • [20] Barroso I., Genetics of Type 2 diabetes, Diabet. Med., 2005, 22, 517–535 http://dx.doi.org/10.1111/j.1464-5491.2005.01550.xCrossrefGoogle Scholar

  • [21] Babenko A.P., Polak M., Cave H., Busiah K., Czernichow P., Scharfmann R., et al., Activating mutations in the ABCC8 gene in neonatal diabetes mellitus, N. Engl. J. Med., 2006, 355, 456–466. http://dx.doi.org/10.1056/NEJMoa055068CrossrefGoogle Scholar

  • [22] Gloyn A.L., Pearson E.R., Antcliff J.F., Proks P., Bruining G.J., Slingerland A.S., et al., Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes., N. Engl. J. Med., 2004, 350, 1838–1849 http://dx.doi.org/10.1056/NEJMoa032922CrossrefGoogle Scholar

  • [23] van den Ouweland J.M., Lemkes H.H., Trembath R.C., Ross R., Velho G., Cohen D., et al., Maternally inherited diabetes and deafness is a distinct subtype of diabetes and associates with a single point mutation in the mitochondrial tRNA(Leu(UUR)) gene, Diabetes, 1994, 43, 746–751 http://dx.doi.org/10.2337/diabetes.43.6.746CrossrefGoogle Scholar

  • [24] Fajans S.S., Bell G.I., Polonsky K.S., Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young, N. Engl. J. Med., 2001, 345, 971–980 http://dx.doi.org/10.1056/NEJMra002168CrossrefGoogle Scholar

  • [25] Collins F.S., Positional cloning: let’s not call it reverse anymore, Nat. Genet., 1992, 1, 3–6 http://dx.doi.org/10.1038/ng0492-3CrossrefGoogle Scholar

  • [26] Hanis C.L., Boerwinkle E., Chakraborty R., Ellsworth D.L., Concannon P., Stirling B., et al., A genome-wide search for human non-insulindependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2, Nat. Genet., 1996, 13, 161–166 http://dx.doi.org/10.1038/ng0696-161CrossrefGoogle Scholar

  • [27] Horikawa Y., Oda N., Cox N.J., Li X., Orho-Melander M., Hara M., et al., Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus, Nat. Genet., 2000, 26, 163–175 http://dx.doi.org/10.1038/79876CrossrefGoogle Scholar

  • [28] Grant S.F., Thorleifsson G., Reynisdottir I., Benediktsson R., Manolescu A., Sainz J., et al., Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes, Nat. Genet., 2006, 38, 320–323 http://dx.doi.org/10.1038/ng1732CrossrefGoogle Scholar

  • [29] Reynisdottir I., Thorleifsson G., Benediktsson R., Sigurdsson G., Emilsson V., Einarsdottir A.S., et al., Localization of a susceptibility gene for type 2 diabetes to chromosome 5q34-q35.2, Am. J. Hum. Genet., 2003, 73, 323–335 http://dx.doi.org/10.1086/377139CrossrefGoogle Scholar

  • [30] Cauchi S., El Achhab Y., Choquet H., Dina C., Krempler F., Weitgasser R., et al., TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis, J. Mol. Med., 2007, 85, 777–782 http://dx.doi.org/10.1007/s00109-007-0203-4CrossrefGoogle Scholar

  • [31] Risch N., Merikangas K., The future of genetic studies of complex human diseases, Science, 1996, 273, 1516–1517 http://dx.doi.org/10.1126/science.273.5281.1516CrossrefGoogle Scholar

  • [32] Watanabe R.M., Black M.H., Xiang A.H., Allayee H., Lawrence J.M., Buchanan T.A., Genetics of gestational diabetes mellitus and type 2 diabetes, Diabetes Care, 2007, 30, Suppl 2, S134–140 http://dx.doi.org/10.2337/dc07-s205CrossrefGoogle Scholar

  • [33] Newton-Cheh C., Hirschhorn J.N., Genetic association studies of complex traits: design and analysis issues, Mutat. Res., 2005, 573, 54–69 Google Scholar

  • [34] Ludovico O., Pellegrini F., Di Paola R., Minenna A., Mastroianno S., Cardellini M., et al., Heterogeneous effect of peroxisome proliferatoractivated receptor gamma2 Ala12 variant on type 2 diabetes risk, Obesity (Silver Spring), 2007, 15, 1076–1081 http://dx.doi.org/10.1038/oby.2007.617CrossrefGoogle Scholar

  • [35] Nielsen E.M., Hansen L., Carstensen B., Echwald S.M., Drivsholm T., Glumer C., et al., The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes, Diabetes, 2003, 52, 573–577 http://dx.doi.org/10.2337/diabetes.52.2.573CrossrefGoogle Scholar

  • [36] Winckler W., Weedon M.N., Graham R.R., McCarroll S.A., Purcell S., Almgren P., et al., Evaluation of common variants in the six known maturity-onset diabetes of the young (MODY) genes for association with type 2 diabetes, Diabetes, 2007, 56, 685–693 http://dx.doi.org/10.2337/db06-0202CrossrefGoogle Scholar

  • [37] Gudmundsson J., Sulem P., Steinthorsdottir V., Bergthorsson J.T., Thorleifsson G., Manolescu A., et al., Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes, Nat. Genet., 2007, 39, 977–983 http://dx.doi.org/10.1038/ng2062CrossrefGoogle Scholar

  • [38] Jorgenson E., Witte J.S., A gene-centric approach to genome-wide association studies, Nat. Rev. Genet., 2006, 7, 885–891 http://dx.doi.org/10.1038/nrg1962CrossrefGoogle Scholar

  • [39] Saxena R., Voight B.F., Lyssenko V., Burtt N.P., de Bakker P.I., Chen H., et al., Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels, Science, 2007, 316, 1331–1336 http://dx.doi.org/10.1126/science.1142358CrossrefGoogle Scholar

  • [40] Steinthorsdottir V., Thorleifsson G., Reynisdottir I., Benediktsson R., Jonsdottir T., Walters G.B., et al., A variant in CDKAL1 influences insulin response and risk of type 2 diabetes, Nat. Genet., 2007, 39, 770–775 http://dx.doi.org/10.1038/ng2043CrossrefGoogle Scholar

  • [41] Florez J.C., Manning A.K., Dupuis J., McAteer J., Irenze K., Gianniny L., et al., A 100k Genome-Wide Association Scan for Diabetes and Related Traits in the Framingham Heart Study: Replication and Integration with Other Genome-Wide Datasets, Diabetes 2007, (in press) CrossrefGoogle Scholar

  • [42] Rampersaud E., Damcott C.M., Fu M., Shen H., McArdle P., Shi X., et al., Identification of novel candidate genes for type 2 diabetes from a genome-wide association scan in the Old Order Amish: Evidence for replication from diabetesrelated quantitative traits and from independent populations, Diabetes, 2007, (in press) CrossrefGoogle Scholar

  • [43] Hanson R.L., Bogardus C., Duggan D., Kobes S., Knowlton M., Infante A.M., A Search for Variants Associated with Young-Onset Type 2 Diabetes in American Indians in a 100k Genotyping Array, Diabetes, 2007, (in press) CrossrefGoogle Scholar

  • [44] Nemoto M., Sasaki T., Deeb S.S., Fujimoto W.Y., Tajima N., Differential effect of PPARgamma2 variants in the development of type 2 diabetes between native Japanese and Japanese Americans, Diabetes Res. Clin. Pract., 2002, 57, 131–137 http://dx.doi.org/10.1016/S0168-8227(02)00027-XCrossrefGoogle Scholar

  • [45] Laaksonen D.E., Lindstrom J., Lakka T.A., Eriksson J.G., Niskanen L., Wikstrom K., et al., Physical activity in the prevention of type 2 diabetes: the Finnish diabetes prevention study, Diabetes, 2005, 54, 158–165 http://dx.doi.org/10.2337/diabetes.54.1.158CrossrefGoogle Scholar

  • [46] Siitonen N., Lindstrom J., Eriksson J., Valle T.T., Hamalainen H., Ilanne-Parikka P., et al., Association between a deletion/insertion polymorphism in the alpha2B-adrenergic receptor gene and insulin secretion and Type 2 diabetes. The Finnish Diabetes Prevention Study, Diabetologia, 2004, 47, 1416–1424 http://dx.doi.org/10.1007/s00125-004-1462-zCrossrefGoogle Scholar

  • [47] Lindi V.I., Uusitupa M.I., Lindstrom J., Louheranta A., Eriksson J.G., Valle T.T., et al., Association of the Pro12Ala polymorphism in the PPAR-gamma2 gene with 3-year incidence of type 2 diabetes and body weight change in the Finnish Diabetes Prevention Study, Diabetes, 2002, 51, 2581–2586 http://dx.doi.org/10.2337/diabetes.51.8.2581CrossrefGoogle Scholar

  • [48] Laukkanen O., Lindstrom J., Eriksson J., Valle T.T., Hamalainen H., Ilanne-Parikka P., et al., Polymorphisms in the SLC2A2 (GLUT2) gene are associated with the conversion from impaired glucose tolerance to type 2 diabetes: the Finnish Diabetes Prevention Study, Diabetes, 2005, 54, 2256–2260 http://dx.doi.org/10.2337/diabetes.54.7.2256CrossrefGoogle Scholar

  • [49] Salopuro T., Pulkkinen L., Lindstrom J., Eriksson J.G., Valle T.T., Hamalainen H., et al. Genetic variation in leptin receptor gene is associated with type 2 diabetes and body weight: The Finnish Diabetes Prevention Study, Int. J. Obes. (Lond.), 2005, 29, 1245–1251 http://dx.doi.org/10.1038/sj.ijo.0803024CrossrefGoogle Scholar

  • [50] Kubaszek A., Pihlajamaki J., Komarovski V., Lindi V., Lindstrom J., Eriksson J., et al., Promoter polymorphisms of the TNF-alpha (G-308A) and IL-6 (C-174G) genes predict the conversion from impaired glucose tolerance to type 2 diabetes: the Finnish Diabetes Prevention Study, Diabetes, 2003, 52, 1872–1876 http://dx.doi.org/10.2337/diabetes.52.7.1872CrossrefGoogle Scholar

  • [51] Mager U., Lindi V., Lindstrom J., Eriksson J.G., Valle T.T., Hamalainen H., et al., Association of the Leu72Met polymorphism of the ghrelin gene with the risk of Type 2 diabetes in subjects with impaired glucose tolerance in the Finnish Diabetes Prevention Study, Diabetes Med., 2006, 23, 685–689 http://dx.doi.org/10.1111/j.1464-5491.2006.01870.xCrossrefGoogle Scholar

  • [52] Florez J.C., Jablonski K.A., Bayley N., Pollin T.I., de Bakker P.I., Shuldiner A.R., et al., TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program, N. Engl. J. Med., 2006, 355, 241–250 http://dx.doi.org/10.1056/NEJMoa062418CrossrefGoogle Scholar

  • [53] Nelson T.L., Fingerlin T.E., Moss L.K., Barmada M.M., Ferrell R.E., Norris J.M., Association of the peroxisome proliferator-activated receptor gamma gene with type 2 diabetes mellitus varies by physical activity among non-Hispanic whites from Colorado, Metabolism, 2007, 56, 388–393 http://dx.doi.org/10.1016/j.metabol.2006.10.022CrossrefGoogle Scholar

  • [54] Soriguer F., Morcillo S., Cardona F., Rojo-Martinez G., de la Cruz Almaraz M., Ruiz de Adana Mde L., et al., Pro12Ala polymorphism of the PPARG2 gene is associated with type 2 diabetes mellitus and peripheral insulin sensitivity in a population with a high intake of oleic acid, J. Nutr., 2006, 136, 2325–2330 Google Scholar

  • [55] Qi L., Meigs J., Manson J.E., Ma J., Hunter D., Rifai N., et al., HFE genetic variability, body iron stores, and the risk of type 2 diabetes in U.S. women, Diabetes, 2005, 54, 3567–3572 http://dx.doi.org/10.2337/diabetes.54.12.3567CrossrefGoogle Scholar

  • [56] Beulens J.W., Rimm E.B., Hendriks H.F., Hu F.B., Manson J.E., Hunter D.J., et al., Alcohol consumption and type 2 diabetes: influence of genetic variation in alcohol dehydrogenase, Diabetes, 2007, 56, 2388–2394 http://dx.doi.org/10.2337/db07-0181CrossrefGoogle Scholar

  • [57] Frayling T.M., Genome-wide association studies provide new insights into type 2 diabetes aetiology, Nat. Rev. Genet., 2007, 8, 657–662 http://dx.doi.org/10.1038/nrg2178CrossrefGoogle Scholar

  • [58] Bermejo J.L., Hemminki K., Gene-environment studies: any advantage over environmental studies? Carcinogenesis, 2007, 28, 1526–1532 http://dx.doi.org/10.1093/carcin/bgm068CrossrefGoogle Scholar

  • [59] Willett W.C., Balancing life-style and genomics research for disease prevention. Science, 2002, 296, 695–698 http://dx.doi.org/10.1126/science.1071055CrossrefGoogle Scholar

  • [60] McCarroll S.A., Altshuler D.M., Copy-number variation and association studies of human disease, Nat. Genet., 2007, 39, S37–42 http://dx.doi.org/10.1038/ng2080CrossrefGoogle Scholar

About the article

Published Online: 2008-03-01

Published in Print: 2008-03-01


Citation Information: Open Medicine, Volume 3, Issue 1, Pages 1–7, ISSN (Online) 2391-5463, DOI: https://doi.org/10.2478/s11536-007-0051-1.

Export Citation

© 2008 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Anna Gluba, Jacek Rysz, and Tadeusz Pietrucha
Open Medicine, 2009, Volume 4, Number 1, Page 1

Comments (0)

Please log in or register to comment.
Log in