Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Medicine

formerly Central European Journal of Medicine

Editor-in-Chief: Darzynkiewicz, Zbigniew

IMPACT FACTOR 2018: 1.221

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.329
Source Normalized Impact per Paper (SNIP) 2018: 0.479

ICV 2018: 156.09

Open Access
See all formats and pricing
More options …
Volume 3, Issue 2


Volume 10 (2015)

Review of surfactin chemical properties and the potential biomedical applications

Gabriela Seydlová
  • Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, 128 44, Praha 2, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jaroslava Svobodová
  • Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, 128 44, Praha 2, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2008-04-09 | DOI: https://doi.org/10.2478/s11536-008-0002-5


Surfactin, a highly powerful biosurfactant produced by various strains of the genus Bacillus, exhibits antibacterial, antiviral, antitumor and hemolytic action. This anionic cyclic lipopeptide is constituted by a heptapeptide interlinked with a β-hydroxy fatty acid. Due to its amhipathic nature surfactin incorporates into the phospholipid bilayer and induces permeabilization and perturbation of target cells. The rising antibiotic resistance as well as a number of remarkable surfactin activities shows that it deserves special interest and is considered as a candidate compound for combating several health related issues. In this review, the current state of knowledge of surfactin properties, biomedical potential and limitations for its application is presented.

Keywords: Antimicrobial resistance; Biosurfactants; Lipopeptide antibiotics; Membrane; Surfactin; Therapeutic agents

  • [1] Boman H.G., Peptide antibiotics and their role in innate immunity, Annu. Rev. Immunol., 1995, 13, 61–92 http://dx.doi.org/10.1146/annurev.iy.13.040195.000425CrossrefGoogle Scholar

  • [2] Zasloff M., Innate immunity, antimicrobial peptides, and protection of the oral cavity, Lancet, 2002, 360, 1116–7 http://dx.doi.org/10.1016/S0140-6736(02)11239-6CrossrefGoogle Scholar

  • [3] Zhang L., Falla T.J., Cationic antimicrobial peptides — An update, Expert. Opin. Invest. Drugs, 2004, 13, 97–106 CrossrefGoogle Scholar

  • [4] Giuliani A., Pirri G., Fabiole Nicoletto S., Antimicrobial peptides: an overview of a promising class of therapeutics, Central European Journal of Biology, 2007, 2, 1–33 http://dx.doi.org/10.2478/s11535-007-0010-5CrossrefGoogle Scholar

  • [5] Arima K., Kakinuma A., Tamura G., Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation, Biochem. Biophys. Res. Commun., 1968, 31, 488–494 http://dx.doi.org/10.1016/0006-291X(68)90503-2CrossrefGoogle Scholar

  • [6] Kakinuma A., Hori M., Isono M., Tamura G., Arima K., Determination of amino acid sequence in surfactin, a crystalline peptidolipid surfactant produced by Bacillus subtilis, Agric. Biol. Chem., 1969, 33, 971–997 CrossrefGoogle Scholar

  • [7] Rosenberg E., Ron E.Z., High-and low-molecularmass microbial surfactants, Appl. Microbiol. Biotechnol., 1999, 52, 154–162 http://dx.doi.org/10.1007/s002530051502CrossrefGoogle Scholar

  • [8] Mulligan C.N., Environmental applications for biosurfactants, Environ. Pollut., 2005, 133, 183–198 http://dx.doi.org/10.1016/j.envpol.2004.06.009CrossrefGoogle Scholar

  • [9] Becher P., Emulsions, theory and practice, 2nd ed., Reinhold Publishing, New York, 1965 Google Scholar

  • [10] Cameotra S.S., Makkar R.S., Synthesis of biosurfactants in extreme conditions, Appl. Microbiol. Biotechnol., 1998, 50, 520–529 http://dx.doi.org/10.1007/s002530051329CrossrefGoogle Scholar

  • [11] Geiger T., Clarke S., Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation, J. Biol. Chem., 1987, 262, 785–794 Google Scholar

  • [12] Desai J.D., Banat I.M., Microbial production of surfactants and their commercial potential, Microbiol. Mol. Biol. Rev., 1997, 61, 47–64 Google Scholar

  • [13] Kinsinger R.F., Kearns D.B., Hale M., Fall R., Genetic requirements for potassium ion-dependent colony spreading in Bacillus subtils, J. Bacteriol., 2005, 187, 8462–8469 http://dx.doi.org/10.1128/JB.187.24.8462-8469.2005CrossrefGoogle Scholar

  • [14] Julkowska D., Obuchowski M., Holland I.B., Séror S.J., Comparative analysis of the development of swarming communities of Bacillus subtilis 168 and a natural wild type: critical effects of surfactin and the composition of the medium, J. Bacteriol., 2005, 187, 65–76 http://dx.doi.org/10.1128/JB.187.1.65-76.2005CrossrefGoogle Scholar

  • [15] Stanley N.R., Lazazzera B.A, Environmental signals and regulatory pathways that influence biofilm formation, Mol. Microbiol., 2004, 52, 917–924 http://dx.doi.org/10.1111/j.1365-2958.2004.04036.xCrossrefGoogle Scholar

  • [16] Bonmatin J.M., Laprévote O., Peypoux F., Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationship to design new bioactive agents, Comb. Chem. High Throughput Screen., 2003, 6, 541–556 Google Scholar

  • [17] Kowall M., Vater J., Kluge B., Stein T., Franke P., Ziessow D., Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105, J. Colloid. Interface Sci., 1998, 204, 1–11 http://dx.doi.org/10.1006/jcis.1998.5558Google Scholar

  • [18] Hue N., Serani L., Laprévote O., Structural investigation of cyclic peptidolipids from Bacillus subtilis by high energy tandem mass spectrometry, Rapid Commun. Mass Spectrom., 2001, 15, 203–209 http://dx.doi.org/10.1002/1097-0231(20010215)15:3<203::AID-RCM212>3.0.CO;2-6CrossrefGoogle Scholar

  • [19] Bonmatin J.M., Genest M., Labbé H., Ptak M., Solution three-dimensional structure of surfactin: a cyclic lipopeptide studied by 1H-NMR, distance geometry, and molecular dynamics, Biopolymers, 1994, 34, 975–986 http://dx.doi.org/10.1002/bip.360340716CrossrefGoogle Scholar

  • [20] Bonmatin J.M., Genest M., Labbé H., Grangemard I., Peypoux F., Maget-Dana R., et al., Production, isolation and characterization of [Leu4]-and [Ile4]-surfactins from Bacillus subtilis, Lett. Peptide Sci., 1995, 2, 41–47 http://dx.doi.org/10.1007/BF00122922CrossrefGoogle Scholar

  • [21] Tsan P., Volpon L., Besson F., Lancelin J.M., Structure and dynamics of surfactin studied by NMR in micellar media, J. Am. Chem. Soc., 2007, 129, 1968–77 http://dx.doi.org/10.1021/ja066117qCrossrefGoogle Scholar

  • [22] Peypoux F., Bonmatin J.M., Wallach J., Recent trends in the biochemistry of surfactin, Appl. Microbiol. Biotechnol., 1999, 51, 553–563 http://dx.doi.org/10.1007/s002530051432CrossrefGoogle Scholar

  • [23] Heerklotz H., Seelig J., Detergent-like action of the antibiotic peptide surfactin on lipid membranes, Biophys. J., 2001, 81, 1547–1554 CrossrefGoogle Scholar

  • [24] Bernheimer A.W., Avigad L.S., Nature and properties of a cytolytic agent produced by Bacillus subtilis, J. Gen. Microbiol., 1970, 6, 361–366 CrossrefGoogle Scholar

  • [25] Carrillo C., Teruel J.A., Aranda F.A., Ortiz A., Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin, Biochem. Biophys. Acta, 2003, 1611, 91–97 http://dx.doi.org/10.1016/S0005-2736(03)00029-4CrossrefGoogle Scholar

  • [26] Maget-Dana R., Ptak M., Interactions of surfactin with membrane models, Biophys. J., 1995, 68, 1937–1943 CrossrefGoogle Scholar

  • [27] Grau A., Gomez Fernandez J.C., Peypoux F., Ortiz A., A study on the interactions of surfactin with phospholipid vesicles, Biochim. Biophys. Acta, 1999, 1418, 307–319 http://dx.doi.org/10.1016/S0005-2736(99)00039-5CrossrefGoogle Scholar

  • [28] Heerklotz H., Seelig J., Leakage and lysis of lipid membranes induced by the lipopeptide surfactin, Eur. Biophys. J., 2007, 36, 305–314 http://dx.doi.org/10.1007/s00249-006-0091-5CrossrefGoogle Scholar

  • [29] Maget-Dana R., Ptak M., Interfacial properties of surfactin, J. Colloid Interface Sci., 1992, 153, 285–291 http://dx.doi.org/10.1016/0021-9797(92)90319-HCrossrefGoogle Scholar

  • [30] Osman M., Høiland H., Holmsen H., Ishigami Y., Tuning micelles of a bioactive heptapeptide biosurfactant via extrinsically induced conformational transition of surfactin assembly, J. Pept. Sci., 1998, 4, 449–458 http://dx.doi.org/10.1002/(SICI)1099-1387(199811)4:7<449::AID-PSC164>3.0.CO;2-#CrossrefGoogle Scholar

  • [31] Thimon L., Peypoux F., Maget-Dana R., Roux B., Michel G., Interactions of bioactive lipopeptides, iturin A and surfactin from Bacillus subtilis, Biotechnol. Appl. Biochem., 1992, 16, 144–151 Google Scholar

  • [32] Hosono K., Suzuki H., Acylpeptides, the inhibition of cyclic adenosine 3′,5′-monophosphate phosphodiesterase. III. Inhibition of cyclic AMP phosphodiesterase, J. Antibiot., 1983, 36, 679–683 Google Scholar

  • [33] Morikawa M., Hirata Y., Imanaka T., A study on the structure-function relationship of lipopeptide biosurfactants, Biochim. Biophys. Acta, 2000, 1488, 211–218 Google Scholar

  • [34] Lipmann F., Gevers W., Kleinkauf H., Roskoski, R. Jr., Polypeptide synthesis on protein templates: the enzymatic synthesis of gramicidin S and tyrocidine, Adv. Enzymol. Relat. Areas Mol. Biol., 1971, 35, 1–34 http://dx.doi.org/10.1002/9780470122808.ch1CrossrefGoogle Scholar

  • [35] Sieber S.A., Marahiel M.A., Learning from nature’s drug factories: nonribosomal synthesis of macrocyclic peptides, J. Bacteriol., 2003, 185, 7036–7043 http://dx.doi.org/10.1128/JB.185.24.7036-7043.2003CrossrefGoogle Scholar

  • [36] Kluge B., Vater J., Salnikow J., Eckart K., Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus subtilis ATCC 21332, FEBS Lett., 1988, 231, 107–110 http://dx.doi.org/10.1016/0014-5793(88)80712-9Google Scholar

  • [37] Nakano M.M., Zuber P., Molecular biology of antibiotic production in Bacillus, Biotechnology, 1990, 10, 223–240 Google Scholar

  • [38] Vater J., Stein T., Vollenbroich D., Kruft V., Wittmann-Liebold B., P. Franke, et al., The modular organization of multifunctional peptide synthetases, J. Protein Chem., 1997, 16, 557–564 http://dx.doi.org/10.1023/A:1026386100259CrossrefGoogle Scholar

  • [39] Steller S., Sokoll A., Wilde C., Bernhard F., Franke P., Vater J., Initiation of surfactin biosynthesis and the role of the SrfD-thioesterase protein, Biochemistry, 2004, 43, 11331–11343 http://dx.doi.org/10.1021/bi0493416CrossrefGoogle Scholar

  • [40] Conti E., Stachelhaus T., Marahiel M.A, Brick P., Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S, EMBO J., 1997, 16, 4174–4183 http://dx.doi.org/10.1093/emboj/16.14.4174CrossrefGoogle Scholar

  • [41] Dieckmann R., Lee Y.O., van Liempt H., von Dohren H., Kleinkauf H., Expression of an active adenylate-forming domain of peptide synthetases corresponding to acyl-CoA-synthetases, FEBS Lett., 1995, 357, 212–216 http://dx.doi.org/10.1016/0014-5793(94)01342-XCrossrefGoogle Scholar

  • [42] Weber T., Baumgartner R., Renner C., Marahiel M.A., Holak T.A., Solution structure of PCP, a prototype for the peptidyl carrier domains of modular peptide synthetases, Structure, 2000, 8, 407–418 http://dx.doi.org/10.1016/S0969-2126(00)00120-9CrossrefGoogle Scholar

  • [43] Keating T.A., Marshall C.G., Walsh C.T., Keating A.E., The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains, Nat. Struct. Biol., 2002, 9, 522–526 Google Scholar

  • [44] Belshaw P.J., Walsh C.T., Stachelhaus T., Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis, Science, 1999, 284, 486–489 http://dx.doi.org/10.1126/science.284.5413.486CrossrefGoogle Scholar

  • [45] Schwarzer D., Mootz H.D., Linne U., Marahiel M.A., Regeneration of misprimed nonribosomal peptide synthetases by type II thioesterases, Proc. Natl. Acad. Sci. U.S.A., 2002, 99, 14083–14088 http://dx.doi.org/10.1073/pnas.212382199CrossrefGoogle Scholar

  • [46] Bruner S.D., Weber T., Kohli R.M., Schwarzer D., Marahiel M.A., Walsh C.T., et al., Structural basis for the cyclization of the lipopeptide antibiotic surfactin by the thioesterase domain SrfTE, Structure, 2002, 10, 301–310 http://dx.doi.org/10.1016/S0969-2126(02)00716-5CrossrefGoogle Scholar

  • [47] Tseng C.C., Bruner S.D., Kohli R.M., Marahiel M.A., Walsh C.T., Siber S.A., Characterization of the surfactin synthetase C-terminal thioesterase domain as a cyclic depsipeptide synthese, Biochemistry, 2002, 41, 13350–13359 http://dx.doi.org/10.1021/bi026592aCrossrefGoogle Scholar

  • [48] Linne U., Marahiel M.A., Control of directionality in nonribosomal peptide synthesis: role of the condensation domain in preventing misinitiation and timing of epimerization, Biochemistry, 2000, 39, 10439–10447 http://dx.doi.org/10.1021/bi000768wCrossrefGoogle Scholar

  • [49] Tsuge K., Ohata Y., Shoda M., Gene yerP, involved in surfactin self-resistance in Bacillus subtilis, Antimicrob. Agents Chemother., 2001, 45, 3566–3573 http://dx.doi.org/10.1128/AAC.45.12.3566-3573.2001CrossrefGoogle Scholar

  • [50] Guenzi E., Galli G., Grgurina I., Pace E., Ferranti P., Grandi G., Coordinate transcription and physical linkage of domains in surfactin synthetase are not essential for proper assembly and ctivity of the multienzyme copmlex, J. Biol. Chem., 1998, 273, 14403–14410 http://dx.doi.org/10.1074/jbc.273.23.14403CrossrefGoogle Scholar

  • [51] Hamoen L.W., Venema G., Kuipers O.P., Controlling competence in Bacillus subtilis: shared use of regulators, Microbiology, 2003, 149, 9–17 http://dx.doi.org/10.1099/mic.0.26003-0CrossrefGoogle Scholar

  • [52] Nakano M.M., Corbell N., Besson J., Zuber P., Isolation and charcterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis, J. Bacteriol., 1992, 182, 3274–3277 http://dx.doi.org/10.1128/JB.182.11.3274-3277.2000CrossrefGoogle Scholar

  • [53] Lambalot R.H., Gehring A.M., Flugel R.S., Zuber P., LaCelle M., Marahiel M.A., et al., A new enzyme superfamily — the phosphopantetheinyl transferases, Chem Biol., 1996, 3, 923–936 http://dx.doi.org/10.1016/S1074-5521(96)90181-7CrossrefGoogle Scholar

  • [54] Sheppard J.D., Jumarie C., Cooper D.G., Laprade R., Ionic channels induced by surfactin in planar lipid bilayer membranes, Biochim. Biophys. Acta, 1991, 26, 13–23 CrossrefGoogle Scholar

  • [55] Kim K., Jung S.Y., Lee D.K., Jung J.K., Park J.K., Kim D.K., et al., Suppression of inflammatory responses by surfactin, a selective inhibitor of platelet cytosolic phospholipase A2, Biochem. Pharmacol., 1998, 55, 975–985 http://dx.doi.org/10.1016/S0006-2952(97)00613-8Google Scholar

  • [56] Kracht M., Rokos H., Ozel M., Kowall M., Pauli G., Vater J., Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives, J. Antibiot., 1999, 52, 613–619. CrossrefGoogle Scholar

  • [57] Kameda Y., Oira S., Matsui K., Kanatomo S., Hase T., Antitumor activity of Bacillus natto. V. Isolation and characterization of surfactin in the culture medium of Bacillus natto KMD 2311, Chem. Pharm. Bull., 1974, 22, 938–944 CrossrefGoogle Scholar

  • [58] Barry A.L., Fuchs P.C., Brown S.D., Evaluation of daptomycin susceptibility testing by Etest and the effect of different batches of media, J. Antimicrob. Chemother., 2001, 48, 557–561 http://dx.doi.org/10.1093/jac/48.1.121CrossrefGoogle Scholar

  • [59] Rotondi K.S., Gierasch L.M., A well-defined amphipathic conformation for the calcium-free cyclic lipopeptide antibiotic, daptomycin, in aqueous solution, Biopolymers, 2005, 80, 374–385 http://dx.doi.org/10.1002/bip.20238CrossrefGoogle Scholar

  • [60] Goldberg J., Cyclic peptide antibiotics; selfassembly required, Trends Microbiol., 2001, 9, 412 http://dx.doi.org/10.1016/S0966-842X(01)02180-1CrossrefGoogle Scholar

  • [61] Wright J.R., Pulmonary surfactant: a front line of lung host defense, J. Clin. Invest., 2003, 111, 1453–1455 CrossrefGoogle Scholar

  • [62] Singh P., Cameotra S.S., Potential applications of microbial surfactants in biomedical sciences, Trends Biotechnol., 2004, 22, 142–146 http://dx.doi.org/10.1016/j.tibtech.2004.01.010CrossrefGoogle Scholar

  • [63] Yoneyama H., Katsumata R., Antibiotic resistance in bacteria and its future for novel antibiotic development, Biosci. Biotechnol. Biochem., 2006, 70, 1060–1075 http://dx.doi.org/10.1271/bbb.70.1060CrossrefGoogle Scholar

  • [64] Hadley C., Overcoming resistance, EMBO Rep., 2004, 5, 550–552 http://dx.doi.org/10.1038/sj.embor.7400181CrossrefGoogle Scholar

  • [65] McHenney M.A., Baltz R.H., Gene transfer and transposition mutagenesis in Streptomyces roseosporus: mapping of insertions that influence daptomycin or pigment production, Microbiology, 1996, 142, 2363–2373 Google Scholar

  • [66] Tally F.P., De Bruin M.F., Development of daptomycin for gram-positive infections, J. Antimicrob. Chemother., 2000, 46, 523–526 http://dx.doi.org/10.1093/jac/46.4.523CrossrefGoogle Scholar

  • [67] Hwang M.H., Lim J.H., Yun H.I., Rhee M.H., Cho J.Y., Hsu W.H., et al., Surfactin C inhibits the lipopolysaccharide-induced transcription of interleukin-1beta and inducible nitric oxide synthase and nitric oxide production in murine RAW 264.7 cells, Biotechnol. Lett., 2005, 27, 1605–1608 http://dx.doi.org/10.1007/s10529-005-2515-1Google Scholar

  • [68] Hwang Y.H., Park B.K., Lim J.H., Kim M.S., Park S.C., Hwang M.H., et al., Lipopolysaccharide-binding and neutralizing activities of surfactin C in experimental models of septic shock, Eur. J. Pharmacol., 2007, 556, 166–171 http://dx.doi.org/10.1016/j.ejphar.2006.10.031CrossrefGoogle Scholar

  • [69] Takahashi T., Ohno O., Ikeda Y., Sawa R., Homma Y., Igarashi M., et al., Inhibition of lipopolysaccharide activity by a bacterial cyclic lipopeptide surfactin, J. Antibiot., 2006, 59, 35–43 http://dx.doi.org/10.1038/ja.2006.6CrossrefGoogle Scholar

  • [70] Vollenbroich D., Pauli G., Ozel M., Vater J., Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis, Appl. Environ. Microbiol., 1997, 63, 44–49 Google Scholar

  • [71] Fassi Fehri L., Wroblewski H., Blanchard A., Activities of antimicrobial peptides and synergy with enrofloxacin against Mycoplasma pulmonis, Antimicrob. Agents Chemother., 2007, 51, 468–74 http://dx.doi.org/10.1128/AAC.01030-06CrossrefGoogle Scholar

  • [72] Rodrigues L., Banat I.M., Teixeira J., Oliveira R., Biosurfactants: potential applications in medicine, J. Antimicrob. Chemother., 2006, 57, 609–618 http://dx.doi.org/10.1093/jac/dkl024CrossrefGoogle Scholar

  • [73] Morikawa M., Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species, J. Biosci. Bioeng., 2006, 101, 1–8 http://dx.doi.org/10.1263/jbb.101.1CrossrefGoogle Scholar

  • [74] Mireles 2nd J.R., Toguchi A., Harshey R.M., Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation, J. Bacteriol., 2001, 183, 5848–5854 http://dx.doi.org/10.1128/JB.183.20.5848-5854.2001CrossrefGoogle Scholar

  • [75] Vollenbroich D., Ozel M., Vater J., Kamp R.M., Pauli G., Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis, Biologicals, 1997, 25, 289–297 http://dx.doi.org/10.1006/biol.1997.0099CrossrefGoogle Scholar

  • [76] Kim S.Y., Kim J.Y., Kim S.H., Bae H.J., Yi H., Yoon S.H., et al., Surfactin from Bacillus subtilis displays anti-proliferative effect via apoptosis induction, cell cycle arrest and survival signaling suppression, FEBS Lett., 2007, 581, 865–871 http://dx.doi.org/10.1016/j.febslet.2007.01.059CrossrefGoogle Scholar

  • [77] Kikuchi T., Hasumi K., Enhancement of plasminogen activation by surfactin C: augmentation of fibrinolysis in vitro and in vivo, Biochim. Biophys. Acta, 2002, 29, 234–245 CrossrefGoogle Scholar

  • [78] Kikuchi T., Hasumi K., Enhancement of reciprocal activation of prourokinase and plasminogen by the bacterial lipopeptide surfactins and iturin Cs, J. Antibiot., 2003, 56, 34–37 CrossrefGoogle Scholar

  • [79] Lim J.H., Park B.K., Kim M.S., Hwang M.H., Rhee M.H., Park S.C., et al., The anti-thrombotic activity of surfactins, J. Vet. Sci., 2005, 6, 353–355 Google Scholar

  • [80] Kim S.D., Park S.K., Cho J.Y., Park H.J., Lim J.H., Yun H.I., et al., Surfactin C inhibits platelet aggregation, J. Pharm. Pharmacol., 2006, 58, 867–870 http://dx.doi.org/10.1211/jpp.58.6.0018CrossrefGoogle Scholar

  • [81] Dehghan-Noudeh G., Housaindokht M., Fazly Bazzaz B.S., Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC 6633, J. Microbiol., 2005, 43, 272–276 Google Scholar

  • [82] Symmank H., Franke P., Saenger W., Bernhard F., Modification of biologically active peptides: production of a novel lipohexapeptide after engineering of Bacillus subtilis surfactin synthetase, Protein Eng., 2002, 15, 913–921 http://dx.doi.org/10.1093/protein/15.11.913CrossrefGoogle Scholar

  • [83] Dufour S., Deleu M., Nott K., Wathelet B., Thonart P., Paquot M., Hemolytic activity of new linear surfactin analogs in relation to their physicochemical properties, Biochim. Biophys. Acta, 2005, 1726, 87–95 Google Scholar

  • [84] Bouffioux O., Berquand A., Eeman M., Paquot M., Dufrêne Y.F., Brasseur R., et al., Molecular organization of surfactin-phospholipid monolayers: effect of phospholipid chain length and polar head, Biochim. Biophys. Acta, 2007, 1768, 1758–1768 http://dx.doi.org/10.1016/j.bbamem.2007.04.015CrossrefGoogle Scholar

About the article

Published Online: 2008-04-09

Published in Print: 2008-06-01

Citation Information: Open Medicine, Volume 3, Issue 2, Pages 123–133, ISSN (Online) 2391-5463, DOI: https://doi.org/10.2478/s11536-008-0002-5.

Export Citation

© 2008 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Xiang Li, Gao He, Hui Jin, Jing Tao, Xinping Li, Changyuan Zhai, Yu Luo, and Xiaoan Liu
ACS Applied Materials & Interfaces, 2019
Yi-Bing Horng, Yu-Hsiang Yu, Andrzej Dybus, Felix Shih-Hsiang Hsiao, and Yeong-Hsiang Cheng
AMB Express, 2019, Volume 9, Number 1
Yannik K.-H. Schneider, Kine Ø. Hansen, Johan Isaksson, Sara Ullsten, Espen H. Hansen, and Jeanette Hammer Andersen
Molecules, 2019, Volume 24, Number 21, Page 3991
Tomasz Janek, Lígia R. Rodrigues, Eduardo J. Gudiña, and Żaneta Czyżnikowska
International Journal of Molecular Sciences, 2019, Volume 20, Number 12, Page 2864
Vanessa Santana Vieira Santos, Edgar Silveira, and Boscolli Barbosa Pereira
Journal of Toxicology and Environmental Health, Part B, 2018, Volume 21, Number 6-8, Page 382
Chuanyu Yang, Yun Zhong, Charles A. Powell, Melissa S. Doud, Yongping Duan, Youzong Huang, and Muqing Zhang
Scientific Reports, 2018, Volume 8, Number 1
Sanghyun Ha, Ho Kim, Ho Chun, In Hwang, Jong-Hee Lee, Jin-Cheol Kim, In Kim, and Hae Park
Applied Sciences, 2018, Volume 8, Number 9, Page 1660
David Cheung and Suman Samantray
Colloids and Interfaces, 2018, Volume 2, Number 3, Page 39
Pengfei Jin, Haonan Wang, Wenbo Liu, and Weiguo Miao
BMC Microbiology, 2017, Volume 17, Number 1
Yuan-Seng Wu, Siew-Ching Ngai, Bey-Hing Goh, Kok-Gan Chan, Learn-Han Lee, and Lay-Hong Chuah
Frontiers in Pharmacology, 2017, Volume 8
Liang Sun, Jiashun Mao, Ying Zhao, Chunshan Quan, Meiling Zhong, and Shengdi Fan
Molecular Simulation, 2017, Page 1
Jonathan R. Coronel, Ana Marqués, Ángeles Manresa, Francisco J. Aranda, José A. Teruel, and Antonio Ortiz
Langmuir, 2017
Aya Kurozuka, Shohei Onishi, Takuto Nagano, Katsumi Yamaguchi, Toyoko Suzuki, and Hideto Minami
Langmuir, 2017, Volume 33, Number 23, Page 5814
Micjel C. Morejón, Annegret Laub, Goran N. Kaluđerović, Alfredo R. Puentes, Ali N. Hmedat, Anselmo J. Otero-González, Daniel G. Rivera, and Ludger A. Wessjohann
Org. Biomol. Chem., 2017, Volume 15, Number 17, Page 3628
Bruno G. Freitas, Juliana G. M. Brito, Pedro P. F. Brasileiro, Raquel D. Rufino, Juliana M. Luna, Valdemir A. Santos, and Leonie A. Sarubbo
Frontiers in Microbiology, 2016, Volume 7
Yuki Hirose, Toshiaki Taira, Kenichi Sakai, Hideki Sakai, Akira Endo, and Tomohiro Imura
Langmuir, 2016, Volume 32, Number 33, Page 8374
Holly L. Holt and Christina M. Grozinger
Journal of Economic Entomology, 2016, Volume 109, Number 4, Page 1487
Kummer Larissa, Jersak Cosmann Nat aacute ssia, Maria Pastore Glaucia, Paula Resende Simiqueli Ana, de Freitas Melo Vander, and Damasceno Gomes Simone
African Journal of Biotechnology, 2016, Volume 15, Number 5, Page 110
Javier Iglesias-Fernández, Leonardo Darré, Axel Kohlmeyer, Robert K. Thomas, Hsin-Hui Shen, and Carmen Domene
Langmuir, 2015, Volume 31, Number 40, Page 11097
Ian W. Hamley
Chem. Commun., 2015, Volume 51, Number 41, Page 8574
M. J. Torres, G. Petroselli, M. Daz, R. Erra-Balsells, and M. C. Audisio
World Journal of Microbiology and Biotechnology, 2015, Volume 31, Number 6, Page 929
Claudia P. Marin, Joice J. Kaschuk, Elisabete Frollini, and Marcia Nitschke
Industrial Crops and Products, 2015, Volume 66, Page 239
Gleb Aktuganov, Jouni Jokela, Henri Kivelä, Elvira Khalikova, Alexander Melentjev, Nailia Galimzianova, Lyudmila Kuzmina, Petri Kouvonen, Juha-Pekka Himanen, Petri Susi, and Timo Korpela
Journal of Chromatography B, 2014, Volume 973, Page 9
Zhenqiu Gao, Xiuyun Zhao, Tao Yang, Jun Shang, Long Shang, Haizhe Mai, and Gaofu Qi
Vaccine, 2014, Volume 32, Number 50, Page 6812
W. F. D. Vilela, S. G. Fonseca, F. Fantinatti-Garboggini, V. M. Oliveira, and M. Nitschke
Applied Biochemistry and Biotechnology, 2014, Volume 174, Number 6, Page 2245
Noha H. Youssef, Neil Wofford, and Michael J. McInerney
International Journal of Molecular Sciences, 2011, Volume 12, Number 12, Page 1767
Rihab Sahnoun, Inès Mnif, Hammadi Fetoui, Radhouan Gdoura, Khansa Chaabouni, Fatma Makni-Ayadi, Choumous Kallel, Semia Ellouze-Chaabouni, and Dhouha Ghribi
International Journal of Peptide Research and Therapeutics, 2014, Volume 20, Number 3, Page 333
Ellen Cristina Souza, Thereza Christina Vessoni-Penna, and Ricardo Pinheiro de Souza Oliveira
International Biodeterioration & Biodegradation, 2014, Volume 89, Page 88
Sreethar Swaathy, Varadharajan Kavitha, Arockiasamy Sahaya Pravin, Ganesan Sekaran, Asit Baran Mandal, and Arumugam Gnanamani
International Journal of Bacteriology, 2014, Volume 2014, Page 1
Chanika Saenge Chooklin, Sirirat Petmeaun, Suppasil Maneerat, and Atipan Saimmai
Annals of Microbiology, 2014, Volume 64, Number 3, Page 1007
MBS Donio, SFA Ronica, V Thanga Viji, S Velmurugan, J Adlin Jenifer, M Michaelbabu, and T Citarasu
Asian Pacific Journal of Tropical Medicine, 2013, Volume 6, Number 11, Page 876
Jenyffer Medeiros Campos, Tânia Lúcia Montenegro Stamford, Leonie Asfora Sarubbo, Juliana Moura de Luna, Raquel Diniz Rufino, and Ibrahim M. Banat
Biotechnology Progress, 2013, Volume 29, Number 5, Page 1097
Jorge F.B. Pereira, Eduardo J. Gudiña, Rita Costa, Rui Vitorino, José A. Teixeira, João A.P. Coutinho, and Lígia R. Rodrigues
Fuel, 2013, Volume 111, Page 259
Zhenqiu Gao, Xiuyun Zhao, Song Lee, Jingjing Li, Hao Liao, Xiaohui Zhou, Jie Wu, and Gaofu Qi
Vaccine, 2013, Volume 31, Number 26, Page 2796
A. Hamdache, R. Azarken, A. Lamarti, J. Aleu, and I. G. Collado
Phytochemistry Reviews, 2013, Volume 12, Number 4, Page 685
Zhenqiu Gao, Shengying Wang, Gaofu Qi, Hui Pan, Li Zhang, Xiaohui Zhou, Jingjing Liu, Xiuyun Zhao, and Jie Wu
Peptides, 2012, Volume 38, Number 1, Page 163
Linn Oftedal, Lene Myhren, Jouni Jokela, Gro Gausdal, Kaarina Sivonen, Stein Ove Døskeland, and Lars Herfindal
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2012, Volume 1818, Number 12, Page 3000
Marius Henkel, Markus M. Müller, Johannes H. Kügler, Roberta B. Lovaglio, Jonas Contiero, Christoph Syldatk, and Rudolf Hausmann
Process Biochemistry, 2012, Volume 47, Number 8, Page 1207
Jin-Feng Liu, Juan Yang, Shi-Zhong Yang, Ru-Qiang Ye, and Bo-Zhong Mu
Applied Biochemistry and Biotechnology, 2012, Volume 166, Number 8, Page 2091
Charles W. Bacon, Dorothy M. Hinton, Trevor R. Mitchell, Maurice E. Snook, and Babatunde Olubajo
Biological Control, 2012, Volume 62, Number 1, Page 1
Atipan Saimmai, Vorasan Sobhon, and Suppasil Maneerat
Annals of Microbiology, 2012, Volume 62, Number 1, Page 391
Andreia Fonseca de Faria, Diego Stéfani Teodoro-Martinez, Geraldo Nazareno de Oliveira Barbosa, Boniek Gontijo Vaz, Ísis Serrano Silva, Jerusa Simone Garcia, Marcos Rogério Tótola, Marcos N. Eberlin, Matthew Grossman, Oswaldo Luiz Alves, and Lucia Regina Durrant
Process Biochemistry, 2011, Volume 46, Number 10, Page 1951
Xiao-hong Cao, Si-si Zhao, Dong-yue Liu, Zhuo Wang, Li-li Niu, Li-hua Hou, and Chun-ling Wang
Chemico-Biological Interactions, 2011, Volume 190, Number 1, Page 16
Christophe Déjugnat, Olivier Diat, and Thomas Zemb
ChemPhysChem, 2011, Volume 12, Number 11, Page 2138
Yiming Li, Shizhong Yang, and Bozhong Mu
Analytical Letters, 2010, Volume 43, Number 6, Page 929
Andreia Fonseca de Faria, Diego Stéfani, Boniek Gontijo Vaz, Ísis Serrano Silva, Jerusa Simone Garcia, Marcos N. Eberlin, Matthew James Grossman, Oswaldo Luiz Alves, and Lucia Regina Durrant
Journal of Industrial Microbiology & Biotechnology, 2011, Volume 38, Number 7, Page 863
K. G. Clarke, F. Ballot, and S. J. Reid
World Journal of Microbiology and Biotechnology, 2010, Volume 26, Number 12, Page 2179
Sarah P. Canova, Tânia Petta, Luciana F. Reyes, Tiago D. Zucchi, Luiz A. B. Moraes, and Itamar S. Melo
World Journal of Microbiology and Biotechnology, 2010, Volume 26, Number 12, Page 2241
Carlyle T. B. Menezes, Erilson C. Barros, Raquel D. Rufino, Juliana M. Luna, and Leonie A. Sarubbo
Applied Biochemistry and Biotechnology, 2011, Volume 163, Number 4, Page 540
Maria Estela Aparecida Giro, João Jeferson Lima Martins, Maria Valderez Ponte Rocha, Vânia Maria M. Melo, and Luciana Rocha Barros Gonçalves
Biotechnology Journal, 2009, Volume 4, Number 5, Page 738
Ibrahim M. Banat, Andrea Franzetti, Isabella Gandolfi, Giuseppina Bestetti, Maria G. Martinotti, Letizia Fracchia, Thomas J. Smyth, and Roger Marchant
Applied Microbiology and Biotechnology, 2010, Volume 87, Number 2, Page 427
You-Sung Oh, Ji-Eun Park, Hyun-Jeong Oh, Jung-Hyon Kim, Myung-Cheol Oh, Chang-Kyung Oh, Young-Ju Oh, and Sang-Bin Lim
Journal of the Korean Society of Food Science and Nutrition, 2010, Volume 39, Number 1, Page 47
G. Seydlová and J. Svobodová
Folia Microbiologica, 2008, Volume 53, Number 4, Page 303

Comments (0)

Please log in or register to comment.
Log in