Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Medicine

formerly Central European Journal of Medicine

Editor-in-Chief: Darzynkiewicz, Zbigniew

1 Issue per year

IMPACT FACTOR 2016 (Open Medicine): 0.294
IMPACT FACTOR 2016 (Central European Journal of Medicine): 0.116

CiteScore 2016: 0.28

SCImago Journal Rank (SJR) 2015: 0.140
Source Normalized Impact per Paper (SNIP) 2015: 0.154

Open Access
See all formats and pricing
More options …
Volume 5, Issue 1 (Feb 2010)


Surmounting antimicrobial resistance in the Millennium Superbug: Staphylococcus aureus

Sanjai Saxena
  • Natural Products & Drug Discovery, Department of Biotechnology and Environmental Sciences, Thapar University, Patiala, Punjab, 147004, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Charu Gomber
  • Natural Products & Drug Discovery, Department of Biotechnology and Environmental Sciences, Thapar University, Patiala, Punjab, 147004, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-01-29 | DOI: https://doi.org/10.2478/s11536-009-0079-5


Staphylococcus aureus is the third most dreaded pathogen posing a severe threat due to its refractory behavior against the current armamentarium of antimicrobial drugs. This is attributed to the evolution of an array of resistance mechanisms responsible for morbidity and mortality globally. Local and international travel has resulted in the movement of drug resistant S. aureus clones from hospitals into communities and further into different geographical areas where they have been responsible for epidemic outbreaks. Thus, there is a dire necessity to refrain further cross movement of these multidrug resistant clones across the globe. The plausible alternative to prevent this situation is by thorough implementation of regulatory aspects of sanitation, formulary usage and development of new therapeutic interventions. Various strategies like exploring novel antibacterial targets, high throughput screening of microbes, combinatorial and synthetic chemistry, combinatorial biosynthesis and vaccine development are being extensively sought to overcome multidrug resistant chronic Staphylococcal infections. The majority of the antibacterial drugs are of microbial origin and are prone to being resisted. Anti-staphylococcal plant natural products that may provide a new alternative to overcome the refractory S.aureus under clinical settings have grossly been unnoticed. The present communication highlights the new chemical entities and therapeutic modalities that are entering the pharmaceutical market or are in the late stages of clinical evaluation to overcome multidrug resistant Staphylococcal infections. The review also explores the possibility of immunity and enzyme-based interventions as new therapeutic modalities and highlights the regulatory concerns on the prescription, usage and formulary development in the developed and developing world to keep the new chemical entities and therapeutic modalities viable to overcome antimicrobial resistance in S. aureus.

Keywords: S. aureus; MRSA; Vaccines; MDR; Rational drug design; Combinatorial biosynthesis; Enzymibiotics

  • [1] Peacock S.J., de Silva I., Lowy F.D., What determines the nasal carriage of Staphylococcus aureus?, Trends Microbiol., 2001, 9, 605–610 http://dx.doi.org/10.1016/S0966-842X(01)02254-5CrossrefGoogle Scholar

  • [2] Pettit C.A., Fowler V.G., Staphylococcus aureus bacteremia and endocarditis, Cardiology Clinics, 2003, 21(2), 219–233 http://dx.doi.org/10.1016/S0733-8651(03)00030-4CrossrefGoogle Scholar

  • [3] Fang G., Keys T.F., Gentry L.O., Harris A.A., Rivera N., Getz K. et al., Prosthetic valve endocarditis resulting from nosocomial bacteremia. A prospective, multicenter study, Ann. Intern. Med.,1993, 119(7), 560–567 CrossrefGoogle Scholar

  • [4] Jevons, M.P., Celbenin-resistant staphylococci., Br. Med. J.,1961,1,124–125 http://dx.doi.org/10.1136/bmj.1.5219.124-aCrossrefGoogle Scholar

  • [5] Parker M.T., Hewitt J.H., Methicillin resistance in Staphylococcus aureus, Lancet,1970,1, 800–804 http://dx.doi.org/10.1016/S0140-6736(70)92408-6CrossrefGoogle Scholar

  • [6] Ogston A., Micrococcus poisoning., J. Anal. Physiol.,1883,17 24–58 Google Scholar

  • [7] Skinner D., Keefer C.S., Significance of bacteremia caused by Staphylococcus aureus., Arch. Intern. Med.,1941,68, 851–875 Google Scholar

  • [8] Archer G.L., Scott G., Conjugative transfer genes in Staphylococcal isolates from the United States, Antimicrob. Agents Chemother.,1991, 33, 2500–2504 Google Scholar

  • [9] Trucksis M., Hooper D.C., Wolfson J.S., Emerging resistance to Fluoroquinolones in Staphylococci, Ann. Intern. Med., 1991, 114, 424–426 CrossrefGoogle Scholar

  • [10] Lacey R.W., Mitchell A.A.B., Gentamicin-resistant Staphylococcus aureus, Lancet, 1969, II, 1425–1426 http://dx.doi.org/10.1016/S0140-6736(69)90967-2CrossrefGoogle Scholar

  • [11] Lowy F.D., Staphylococcus aureus infections, N. Engl.J. Med.,1998, 339, 520–532 http://dx.doi.org/10.1056/NEJM199808203390806CrossrefGoogle Scholar

  • [12] Moellering R.C. Jr., Problems with antimicrobial resistance in gram-positive cocci, Clin. Infect. Dis., 1998, 26,1177–1178 http://dx.doi.org/10.1086/520288CrossrefGoogle Scholar

  • [13] Lelievre H., Lina G., Jones M.E., Olive C., Forey F., Roussel-Delvallez M., et al., Emergence and Spread in French Hospitals of Methicillin-Resistant Staphylococcus aureus with Increasing Susceptibility to Gentamicin and Other Antibiotics. J. Clin. Microbiol.,1999, 11, 3452–3457 Google Scholar

  • [14] Mulligan M.E., Ruane P.J., Johnston L., Wong P., Wheelock J.P., MacDonald K.,et al. Ciprofloxacin for eradication of methicillin-resistant Staphylococcus aureus colonization. Am. J. Med.,1987,82(4A), 215–219 Google Scholar

  • [15] Harnett N., Brown S., Krishnan C., Emergence of Quinolone Resistance among Clinical Isolates of Methicillin-Resistant Staphylococcus aureus in Ontario, Canada, Antimicrob. Agents Chemother.,1991,35(9),1911–1913 Google Scholar

  • [16] Kuehnert M.J., Hill H.A., Kupronis B.A., Tokars J.I., Solomon S.L., Jernigan D.B., Methicillin-resistant Staphylococcus aureus-related hospitalizations, United States. Emerg.Infect. Dis.,2005,11:868–872 CrossrefGoogle Scholar

  • [17] Hiramatsu K., Vancomycin-resistant Staphylococcus aureus: a new model of antibiotic resistance, Lancet Infect. Dis.,2001,1(3),147–155 http://dx.doi.org/10.1016/S1473-3099(01)00091-3CrossrefGoogle Scholar

  • [18] Hiramatsu, K., Reduced susceptibility of Staphylococcus aureus to vancomycin — Japan 1996, Morb. Mortal. Wkly. Rep.,1997,27,624–626 Google Scholar

  • [19] Centers for Disease Control and Prevention S. aureus resistant to Vancomycin in the US, Morb. Mortal. Wkly. Rep., 2002, 51, 565–567 Google Scholar

  • [20] Centers for Disease Control and Prevention, Vancomycin resistant S. aureus Pennysylvania 2002, Morb. Mortal. Wkly. Rep.,2002, 51, 902 Google Scholar

  • [21] Riley T.V., Pearman J.W., Rouse I.L., Changing epidemiology of methicillin-resistant Staphylococcus aureus in Western Australia, Med. J. Aust.,1995, 163,412–414 Google Scholar

  • [22] Cookson B.D., Methicillin-resistant Staphylococcus aureus in the community: new battlefronts, or are the battles lost?, Infect. Control Hosp. Epidemiol., 2000, 21, 398–403 http://dx.doi.org/10.1086/501781CrossrefGoogle Scholar

  • [23] Chambers H.F., Community associated Methicillin resistant Staphylococcus aureus- resistance and virulence coverage. N. Engl. J. Med., 2005, 325, 1485–1487 http://dx.doi.org/10.1056/NEJMe058023CrossrefGoogle Scholar

  • [24] Moran G.J., Krishnadasan A., Gorwitz R.J. Fosheim G.E., McDougal L.K., Carey R.B. et al., Methicillin resistant S. aureus infections among patients in the emergency department, N. Engl. J Med., 2006, 355, 666–674 http://dx.doi.org/10.1056/NEJMoa055356CrossrefGoogle Scholar

  • [25] Moreno F., Crisp F., Jorgenson J.H., Patterson and Patterson J.E., Methicillin-resistant Staphylococcus aureus as a community organism,Clin. Infect. Dis., 1995, 21, 1308–1312. CrossrefGoogle Scholar

  • [26] Bukharie H.A., Abdelhadi M.S., Saeed I.A., Rubaish A.M., Larbi E.B., Emergence of methicillin- resistant Staphylococcus aureus as a community pathogen. Diagn.Microbiol.Infect.Dis., 2001, 40,1–4 http://dx.doi.org/10.1016/S0732-8893(01)00242-5CrossrefGoogle Scholar

  • [27] Salgado C.D., Farr B.M., Calfee D.P., Community acquired methicillin-resistant Staphylococcus aureus: A meta-analysis of prevalence and risk factors, Clin.Infect. Dis., 2003, 36, 131–139 http://dx.doi.org/10.1086/345436CrossrefGoogle Scholar

  • [28] Adcock P.M., Pator P., Medly F., Patterson J.E., Murphy T.V., Methicillin-resistant Staphylococcus aureus in two child care centers, J. Infect. Dis., 1998, 178, 577–580 CrossrefGoogle Scholar

  • [29] Lindenmayer J.M., Schoenfeld S., O’Grady R., Carney J.K., Methicillin-resistant Staphylococcus aureus in a high school wrestling team and the surrounding community, Arch.Intern. Med.,1998,158, 895–899 http://dx.doi.org/10.1001/archinte.158.8.895CrossrefGoogle Scholar

  • [30] Centers for Disease Control and Prevention. Outbreaks of community-associated methicillin-resistant Staphylococcus aureus skin infections—Los Angeles County, California, 2002–2003, Morb. Mortal. Wkly. Rep., 2003, 52, 88 Google Scholar

  • [31] Cohen P.R., Kurzrock R., Community-acquired methicillin-resistant Staphylococcus aureus skin infection: an emerging clinical problem, J. Am. Acad. Dermatol., 2004, 50,277–280 http://dx.doi.org/10.1016/j.jaad.2003.06.005CrossrefGoogle Scholar

  • [32] Olayinka B.O., Olnitola O.S., Olayinka A.T., Raji B., Antibiotic susceptibility pattern and multiple antibiotic resistance wider of S. aureus isolates in Zaria, Nigeria, J. Trop. Biosci., 2004, 451–454 Google Scholar

  • [33] Kowalski T.J., Berbari E.F., Osmon D.R., Epidemiology, treatment and prevention of community acquired methicillin resistant Staphylococcus aureus infections, Mayo Clin. Proc., 2005, 80(9), 1201–1208 http://dx.doi.org/10.4065/80.9.1201CrossrefGoogle Scholar

  • [34] Francis J.S., Doherty M.C., Lopatin U., Johnston C.P., Sinha G., Ross T., Severe community onset pneumonia in healthy adults caused by methicillin resistant Staphylococcus aureus carrying panton valentine leukocidin genes, Clin. Infect. Dis.,2005, 40(1),100–107 http://dx.doi.org/10.1086/427148CrossrefGoogle Scholar

  • [35] O’Brien F.G., Pearman J.W., Gracey M., Riley T.V., Grubb W.B., Community strains of MRSA involved in hospital outbreak, J. Clin. Microbiol. 1999, 37(9), 2858–2862 Google Scholar

  • [36] Pelag A.Y. and Munckhof W.J., Fatal necrotizing pneumonias due to community acquired Methicillin resistant Staphylococcus aureus, Med. J. Aus., 2004,181(4), 228–229 Google Scholar

  • [37] Klevens M.R., Morrison A., Nadle J., Petit S., Gershman K., Ray S. et al., Invasive Methicillin resistant Staphylococcus aureus infections in the United States, JAMA, 2007, 298,1763–1771 http://dx.doi.org/10.1001/jama.298.15.1763CrossrefGoogle Scholar

  • [38] Fuda C., Suvorov M., Vakulenko S.B., Mobashrey S., The Basis for Resistance to β-Lactam antibiotics by Penicillin-binding Protein2a of Methicillin-resistant Staphylococcus aureus, J. Biol. Chem., 2004, 279(39): 40802–40806 http://dx.doi.org/10.1074/jbc.M403589200CrossrefGoogle Scholar

  • [39] Brown D.F.J., Reynolds P.E., Intrinsic resistance to beta-lactam antibiotics in Staphylococcus aureus. FEBS Lett.,1980,122,275–278 http://dx.doi.org/10.1016/0014-5793(80)80455-8CrossrefGoogle Scholar

  • [40] Hartman B.J., Tomasz, A., Low-affinity penicillin binding protein associated with β-lactam resistance in Staphylococcus aureus. J. Bacteriol.,1984,58, 513–516 Google Scholar

  • [41] Georgopapadakou N.H., Dix B.A., Mauriz, Y.R., Possible physiological functions of penicillin-binding proteins in Staphylococcus aureus, Antimicrob. Agents Chemother., 1986; 29, 333–336 Google Scholar

  • [42] Utsui Y., Yokota T., Role of altered penicillin binding protein in methicillin and cepham resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 1985, 28, 397–403 Google Scholar

  • [43] Song M.D., Wachi M., Doi M., Ishino F., Matsuhashi M., Evolution of inducible penicillin resistant target protein in methicillin resistant S. aureus by gene fusion, FEBS Lett.,1987,221, 167–171 http://dx.doi.org/10.1016/0014-5793(87)80373-3CrossrefGoogle Scholar

  • [44] Walsh T.R., Howe R.A., The prevalence and mechanisms of vancomycin resistance in Staphylococcus aureus, Ann. Rev. Microbiol., 2002, 56, 657–75 http://dx.doi.org/10.1146/annurev.micro.56.012302.160806CrossrefGoogle Scholar

  • [45] Chopra I., Antibiotic resistance in Staphylococcus aureus: Causes, concerns and cures?, Exp. Rev. Ant. Infect. Ther., 2003, 1(1), 45–55 http://dx.doi.org/10.1586/14787210.1.1.45CrossrefGoogle Scholar

  • [46] Weisblum B., Erythromycin resistance by ribosome modification, Antimicrob. Agents Chemother., 1995,39,577–585 Google Scholar

  • [47] Ross J.I., Eady E.A., Cove J.H., Canliffe W.J., Cunliffe W.J., Baumberg S., Wootton J.C., Inducible erythromycin resistance in Staphylococci is encoded by a member of ATP binding transport supergene family, Mol. Microbiol.,1990, 4, 1207–1214 http://dx.doi.org/10.1111/j.1365-2958.1990.tb00696.xCrossrefGoogle Scholar

  • [48] Saxena, S., Combating multidrug resistance microbes: A burgeoning problem In Microbes & Human Health, Vol.4, 2007; Edited by Dr. A.K. Chauhan, Dr.Harsha Kharkwal & Dr. Ajit Varma,pp.589–607,I.K.International Publishing House, New Delhi,India ISBN81-89866-05-02 Google Scholar

  • [49] Bismuth R., Zilhao R., Sakamoto H. Guesdon J.L., Courvalin P., Gene heterogeneity for tetracycline resistance in Staphylococcus spp. Antimicrob. Agents Chemother., 1990,34,1611–1614 Google Scholar

  • [50] Warsa U.C., Nonoyama M., Ida T., Okamoto R., Okubo T., and Shimauchi C., et.al., Detection of tet (K) and tet(M) in Staphylococcus aureus of Asian countries by Polymerase chain reaction, J. Antibiot., 1996, 49(11),1127–1132 CrossrefGoogle Scholar

  • [51] Trzcinski K., Cooper B.S., Hryniewicz W., Dawson C.G., Expression of resistance to tetracyclines in strains of methicillin- resistant Staphylococcus aureus, J. Antimicrob. Chemother., 2000, 45, 763–770 http://dx.doi.org/10.1093/jac/45.6.763CrossrefGoogle Scholar

  • [52] Schimtz, F.J., Angela K., Sadurski, R., Milatovic D, Fluit A.C., et al. Resistance to tetracycline and distribution of tetracycline resistance genes in European Staphylococcus aureus isolates. J. Antimicrob. Chemother., 2001, 47, 239–240 http://dx.doi.org/10.1093/jac/47.2.239CrossrefGoogle Scholar

  • [53] Shinabarger D.L., Marotti K.R., Murray R.W., Lin A.H., Melchior E.P., Swaney S.M. et al. Mechanisms of actions of oxazlidinones: effects of linezolid and eperezolid on translation reactions. Antimicrob. Agents Chemother., 1997, 41, 2132–2136 Google Scholar

  • [54] Tsiodras S., Gold H.S., Sakouloulas G., Eliopoulos P.M., Wennersten C., Venkataraman L., et al., Linezolid resistance in a clinical isolate of Staphylococcus aureus, Lancet, 2001, 358, 207–208 http://dx.doi.org/10.1016/S0140-6736(01)05410-1CrossrefGoogle Scholar

  • [55] Kloss P., Xiong L., Shinabarger D.L., Mankin, A.S. Resistance mutations in 23 S rRNA identify the site of action of the protein synthesis inhibitor linezolid in the ribosomal peptidyl transferase center, J. Mol. Biol.,1999, 294(1), 93–101 http://dx.doi.org/10.1006/jmbi.1999.3247CrossrefGoogle Scholar

  • [56] Vanuffel P., Giambattista Di M., Cocito, C., Chemical probing of virginiamycin M -promoted conformational change of the peptidyltransferase domain, Nuc. Acids Res.,1994, 22, 4449–4453 http://dx.doi.org/10.1093/nar/22.21.4449CrossrefGoogle Scholar

  • [57] Mitchell B.A., Brown M.H., Skurray, R.A., Qac A efflux pumps from Staphylococcus aureus: Comparative analysis of resistance to diamidines, biguanidines and guanylhydrazones, Antimicrob. Agents Chemother., 1998, 42, 475–471 http://dx.doi.org/10.1093/jac/42.4.475CrossrefGoogle Scholar

  • [58] Walmsley M.B., Mckeegan K.S., Walmsley, A.R., Structure and function of efflux pumps that confer resistance to drugs, Biochem. J.,2003, 376,313–338 http://dx.doi.org/10.1042/BJ20020957CrossrefGoogle Scholar

  • [59] Allignet J., Solh N.El., Characterization of a new staphylococcal gene, vga B, encoding a putative ABC transfer conferring resistance to streptogramin A and related compounds,Gene,1997, 202, 133–138 http://dx.doi.org/10.1016/S0378-1119(97)00464-2CrossrefGoogle Scholar

  • [60] Prunier A.L., Malbruny B., Laurans M., Brouard J., Duhamel J.F. and Leclercq R., High rate of macrolide resistance in Staphylococcus aureus strains from patients with cystic fibrosis reveals high proportions of hypermutable strains, J. Infect. Dis., 2003, 187, 1709–1716 http://dx.doi.org/10.1086/374937CrossrefGoogle Scholar

  • [61] Trucksis M., Wolfson J.S., Hooper D.C., A novel locus conferring fluoroquinolone resistance in Staphylococcus aureus, J Bact., 1991, 173(18), 5854–5860 Google Scholar

  • [62] Ng, E.Y., Trucksis, M., Hooper, D.C., Quinolone resistance mutations in topoisomerase IV: relationship to the flqA locus and genetic evidence that topoisomerase IV is the primary target and DNA gyrase is the secondary target of fluoroquinolones in Staphylococcus aureus, Antimicrob. Agents Chemother.,1996, 40, 1881–1888 Google Scholar

  • [63] Allignet J., Loncle V., Simenel C., Delepierre M., El Solh N., Sequence of a staphylococcal gene, vat, encoding an acetyltransferase inactivating the A-type compounds of virginiamycin-like antibiotics, Gene,1993,130, 91–98 http://dx.doi.org/10.1016/0378-1119(93)90350-CCrossrefGoogle Scholar

  • [64] McGowan, J.E. Jr, Gerding D.N., Does antibiotic restriction prevent resistance?, New Horiz.,1996,4: 370–376 Google Scholar

  • [65] Niederman M.S., Is “Crop rotation” of antibiotic the solution to a “resistant” problem to ICU?, Am. J. Resp. Crit. Care Med., 1997; 156: 1029–1031 CrossrefGoogle Scholar

  • [66] Jarvis, W.R., Handwashing- the Semmelweis lesson forgotten?, Lancet, 1994, 344(8933): 1311–1312 http://dx.doi.org/10.1016/S0140-6736(94)90687-4CrossrefGoogle Scholar

  • [67] Casewell, M.W., Hill R.L., Minimal dose requirements for nasal mupirocin and its role in the control of epidemic MRSA., J. Hosp. Infect., 1991;19: 35–40 http://dx.doi.org/10.1016/0195-6701(91)90201-ICrossrefGoogle Scholar

  • [68] Jones M.E., In vitro profile of a new β-lactam, Ceftobiprole with activity against MRSA., Clin. Microbiol. Infect., 2007, 13(2):17–24 http://dx.doi.org/10.1111/j.1469-0691.2007.01722.xCrossrefGoogle Scholar

  • [69] Koga T., Abe T., Harumi I., Takenouchi T., Kitayama A., Yoshida T., et al. In vitro and in vivo antibacterial activities of CS-023 (RO4908463), a novel parenteral carbapenem. Antimicrob. Agents Chemother., 2005, 49(8), 3239–3250 http://dx.doi.org/10.1128/AAC.49.8.3239-3250.2005CrossrefGoogle Scholar

  • [70] Sum P.E., Lee V.J., Testa R.T., Hlavka J.J., Ellestad G.A., et al., Glycylcyclines — A new generation of potent antibacterial agents through modification of 9-aminotetracyclines, J. Med. Chem., 1994, 37, 184–188 http://dx.doi.org/10.1021/jm00027a023CrossrefGoogle Scholar

  • [71] Goldstein F.W., Kitzis M.D., Acar, J.F.N., N-Dimethylglycylamido derivatives of minocycline and 6-demethyl-6-desoxytetracycline. Two new glycylcyclines highly effective against tetracyclineresistant gram-positive cocci., Antimicrob. Agents Chemother., 1994, 38, 2218–2220 Google Scholar

  • [72] Livermore D.M., Tigecycline: what is it, and where should it be used?, J.Antimicrob. Chemother., 2005,56(4), 611–14 http://dx.doi.org/10.1093/jac/dki291CrossrefGoogle Scholar

  • [73] Bergeron J., Ammirati M., Danley D., Glycylcyclines bind to the high-affinity tetracycline ribosomal binding site and evade Tet (M),-and Tet(O)-mediated ribosomal protection, Antimicrob. Agents Chemother., 1996, 40, 2226–2228 Google Scholar

  • [74] Harris, R. and Cruz, M., Tigecycline (Tygacil): A Novel First-in-Class, Broad-Spectrum Intravenous Antibiotic For the Treatment of Serious Bacterial Infections, Pharmacy & Therapeutics, 31(1), 18–27 and 57 Google Scholar

  • [75] McKenney D., Quinn J.M., Jackson C.L., Guilmet J.L., Landry J.A., Tanaka S.K., et al. Evaluation of PTK 0796 in experimental model of infections caused by gram positive and gram-negative pathogen. Abstr. InterSc. Conf. Antimicrob. Agents Chemother., 2003, Sep 14–17, abstract no. F-757 Google Scholar

  • [76] Shah, P.M., The need for new therapeutic agents: what is in the pipeline?,Clinical Microbiol.Infect., 11, 36–42 Google Scholar

  • [77] Zeckel M.L., Preston D.A., Allen B.S., In vitro activities of AntiLY333328 and comparative agents against nosocomial gram positive pathogens collected in a 1997 global surveillance study, Antimicrob. Agents Chemother., 2000, 44(5), 1370–1368 http://dx.doi.org/10.1128/AAC.44.5.1370-1374.2000CrossrefGoogle Scholar

  • [78] Barrett J.F., Oritavanacin: Eli Lilly & Co., Curr. Opinion Investig. Drugs, 2001, 2(8), 1039–1044 Google Scholar

  • [79] Jabés D., Candiani G., Romanó G., Brunati C., Riva S., and Cavaleri, M., Efficacy of Dalbavancin against Methicillin-Resistant Staphylococcus aureus in the Rat Granuloma Pouch Infection Model. Antimicrob. Agents Chemother., 48(4), 1118–1123 Google Scholar

  • [80] Lin G., Credito K., Ednie L.M. and Appelbaum, P.C., Antistaphylococcal activity of Dalbvancin, an experimental glycopeptide, Antimicrob. Agents Chemother., 2005,49(2), 770–772 http://dx.doi.org/10.1128/AAC.49.2.770-772.2005CrossrefGoogle Scholar

  • [81] O’Hare M.D., Ghosh G., Felmingham D. and Grüeberg R.N., In vitro studies with ramoplanin (MDL 62,198): a novel lipoglycopeptide antimicrobial, J. Antimicrob.Chemother.,1990,25,217–220 http://dx.doi.org/10.1093/jac/25.2.217CrossrefGoogle Scholar

  • [82] Montecalvo M.A., Ramoplanin: a novel antimicrobial agent with the potential to prevent vancomycinresistant enterococcal infection in high-risk patients, J. Antimicrob.Chemother., 2003, 51(Suppl. S3), iii31–iii35 Google Scholar

  • [83] Takahata M., Mitsuyama J., Yamashiro Y., Yonezawa M., Araki H., Todo Y., et al., In vitro and in vivo antimicrobial activities of T-3811ME, a novel des-F(6)-quinolone, Antimicrob. Agents Chemother., 1999, 43:1077–84 Google Scholar

  • [84] Noviello S., Ianniello F., Leone S. and Esposito S., Comparative activity of garenoxacin and other agents by susceptibility and time-kill testing against Staphylococcus aureus, Streptococcus pyogenes and respiratory pathogens, J. Antimicrob. Chemother., 2003, 52,869–872 http://dx.doi.org/10.1093/jac/dkg429CrossrefGoogle Scholar

  • [85] Schmitz FJ, Fluit AC, Milatovic D, Verhoef J., Heinz H.P. and Brisse S., In vitro potency of moxifloxacin, clinafloxacin and sitafloxacin against 248 genetically defined clinical isolates of S.aureus, J. Antimicrob. Chemother., 2006, 46, 109–113 http://dx.doi.org/10.1093/jac/46.1.109CrossrefGoogle Scholar

  • [86] Bhagwat SS, Mundkar LA, Gupte SV, Patel M.V., and Khorakiwala H.F., The anti- MRSA quinolone WCK771 has potent activity against sequentially labeled mutants and has a narrow mutant selection windows against quinolone resistant S. aureus and preferentially targets DNA gyrase. Antimicrob. Agents Chemother., 2006, 50(11), 3568–3579 http://dx.doi.org/10.1128/AAC.00641-06Google Scholar

  • [87] Das B., Rudra S., Yadav A., Ray A., Raja Rao A.V.S., Srinivas A.S.S.V., et al., Synthesis and SAR of novel oxazolidinones: discovery of ranbezolid, Bioorg.Med.Chem.Lett., 2005, 15(19), 4261–4267 http://dx.doi.org/10.1016/j.bmcl.2005.06.063CrossrefGoogle Scholar

  • [88] Mathur T., Bhateja P., Pandya M., Fatma T., Rattan A., In vitro activity of RBx 7644(ranbezolid) on biofilm producing bacteria, Int.J. Antimicrob. Agents, 2004, 24(4),369–373 http://dx.doi.org/10.1016/j.ijantimicag.2004.04.012CrossrefGoogle Scholar

  • [89] Rattan A., RBx-7644: Oxazolidinone antibacterial, Drugs of the future, 2003, 28(11),1070–1077 http://dx.doi.org/10.1358/dof.2003.028.11.769931CrossrefGoogle Scholar

  • [90] Bush K., Macielag M. and Weidner-Wells, M., Taking inventory: antibacterial agents currently at or beyond Phase 1, Curr. Opin. Microbiol., 2004, 7(5), 466–476 http://dx.doi.org/10.1016/j.mib.2004.08.013CrossrefGoogle Scholar

  • [91] Gill C.J., Abruzzo G.K., Flattery A.M., Misura A.S., Bartizal K., Hickey E.J., In Vivo Efficacy of a Novel Oxazolidinone Compound in Two Mouse Models of Infection, Antimicrob. Agents Chemother., 2007, 51(9), 3434–3436 http://dx.doi.org/10.1128/AAC.01567-06CrossrefGoogle Scholar

  • [92] Yuan Z., Trias J., White R.J., Deformylase as a novel antibacterial target, Drug Discovery Today, 2001,6(18), 954–961 http://dx.doi.org/10.1016/S1359-6446(01)01925-0CrossrefGoogle Scholar

  • [93] Credito K, Lin G, Ednie LM and Appelbaum P.C., Antistaphylococcal activity of LBM415, a new peptide deformylase inhibitor, compared with those of other agents, Antimicrob. Agents Chemother. 2004, 48, 4033–4036 http://dx.doi.org/10.1128/AAC.48.10.4033-4036.2004CrossrefGoogle Scholar

  • [94] Hoang T.T., Schweizer H.P., Fatty acid biosynthesis in Pseudomonas aeruginosa: cloning and characterization of the fabAB operon encoding β-hydroxydecanoyl-acyl carrier protein dehydratase (FabA) and β-ketoacyl-acyl carrier protein synthase I (FabB). J Bacteriol., 1997,179, 5326–5332 Google Scholar

  • [95] Heath R.J., Rubin J.R., Holland D.R., Zhang E., Snow M.E., and Rock C.O., Mechanism of Triclosan Inhibition of Bacterial Fatty Acid Synthesis, J. Biol. Chem. 1999, 274(16), 11110–11114 http://dx.doi.org/10.1074/jbc.274.16.11110CrossrefGoogle Scholar

  • [96] Payne D.J., Warren P.V., Holmes D.J., Ji Y., Lonsdale J.T., Bacterial fatty-acid biosynthesis: a genomics-driven target for antibacterial drug discovery, Drug Discovery Today, 2001, 6(10), 537–4444 http://dx.doi.org/10.1016/S1359-6446(01)01774-3CrossrefGoogle Scholar

  • [97] Oh K.B., Oh M.N., Kim J.G., Shin D.S., Shin J, Inhibition of sortase-mediated Staphylococcus aureus adhesion to fibronectin via fibronectin-binding protein by sortase inhibitors, Appl. Microbiol. Biotechnol., 2005, 70(1),102–106 http://dx.doi.org/10.1007/s00253-005-0040-8CrossrefGoogle Scholar

  • [98] Kim S.H., Shin D.S., Oh M.N., Chung S.C., Lee J.S., Chang I.M., Oh K.B., Inhibition of Sortase, a Bacterial Surface Protein Anchoring Transpeptidase, by β-Sitosterol-3-O-glucopyranoside from Fritillaria verticillata, BioSci. Biotech. Biochem., 2003, 67(11): 2477–2479 http://dx.doi.org/10.1271/bbb.67.2477CrossrefGoogle Scholar

  • [99] Riedlinger J., Reicke A., Zähner H., Krismer B., Bull A.T., Maldonado L.A., Ward A.C., Goodfellow M., Bister B., Bischoff D., Süssmuth R.D., Fiedler H.P., “Abyssomicins, inhibitors of the paraaminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032” J. Antibiot., 2004, 57, 271–279 CrossrefGoogle Scholar

  • [100] Allsop A.E., New Antibiotic discovery, novel screens, novel targets and impact of genomics, Curr. Opin. Microbiol.,1998, 1(5),530–534 http://dx.doi.org/10.1016/S1369-5274(98)80085-4CrossrefGoogle Scholar

  • [101] Dunman PM, Murphy E, Haney S, Kellogg G.T., Wu S., et al., Transcription Profiling-Based Identification of Staphylococcus aureus Genes Regulated by the agr and/or sarA Loci, J. Bacteriol. 2001, 183, 7341–7353 http://dx.doi.org/10.1128/JB.183.24.7341-7353.2001CrossrefGoogle Scholar

  • [102] Liu J., Dehbi M, Moeck G, Arhin F., Bauda P., Bergeron D., et al., Antimicrobial drug discovery through bacteriophage genomics, Nature Biotech., 2004, 22(2), 185–191 http://dx.doi.org/10.1038/nbt932CrossrefGoogle Scholar

  • [103] Moreillon P.,The efficacy of amoxicillin /clavulanate (Augmentin) in treatment of severe staphylococcal infections, J Chemother.1994, 6(2). 51–57 Google Scholar

  • [104] Prieto J, Aguilar L, Gimenez MJ, Toro D., Gómez-Lus M. L., Dal-Ré R., et al. In vitro Activities of co-amoxiclav at concentrations achieved in human serum against the resistant subpopulation of heteroresistant Staphylococcus aureus: a Controlled Study with vancomycin, Antimicrob. Agents Chemother.,1998,42(7),1574–1577 Google Scholar

  • [105] Edouard R.S., Pestel-Caron M., Lemeland J.F., Caron F., In vitro synergistic effects of double and triple combinations of β-Lactams, vancomycin, and netilmicin against methicillin-resistant Staphylococcus aureus strains, Antimicrob. Agents Chemother., 2004, 44(11), 3055–3060 http://dx.doi.org/10.1128/AAC.44.11.3055-3060.2000CrossrefGoogle Scholar

  • [106] Shelburne S.A., Musher D.M., Hulten K., Ceasar H., Lu M.Y., Bhaila I., et al. In vitro killing of community-associated methicillin-resistant Staphylococcus aureus with drug combinations, Antimicrob. Agents Chemother., 2004, 48, 4016–4019 http://dx.doi.org/10.1128/AAC.48.10.4016-4019.2004CrossrefGoogle Scholar

  • [107] Rand K.H. and Houck H., Synergy of daptomycin with oxacillin and other β-Lactams against methicillin resistant Staphylococcus aureus, Antimicrob. Agents Chemother., 2004,48(8),2871–2875 http://dx.doi.org/10.1128/AAC.48.8.2871-2875.2004CrossrefGoogle Scholar

  • [108] Kono K., Tatara I., Takeda S., Arakawa K., Shirotani T., Okada M. et al. Antibacterial activity of epigallocatechin gallate methicillin resistant Staphylococcus aureus. Journal of Japan Association of Infectious Diseases,1994,68,1518–1522 Google Scholar

  • [109] Shiota S., Shimizu M., Mizushima T., Ito H., Hatano T., Yoshida T., Tsuchiya T., Marked reduction in the minimum inhibitory concentration (MIC) of betalactams in methicillin-resistant Staphylococcus aureus produced by epicatechin gallate, an ingredient of green tea (Camellia sinensis)., Biol. Pharm. Bull.,1999, 22(12), 1388–1390 CrossrefGoogle Scholar

  • [110] Takahashi O., Cai Z., Toda M., Hara Y., Shimamura T. et al., Appearance of antibacterial activity of oxacillin againt methicillin resistant Staphylococcus aureus (MRSA) in the presence of catechin. Journal of Japan Association of Infectious Diseases, 1995,69: 1126–1134 Google Scholar

  • [111] Hamilton-Miller J.M, Shah S., Activity of tea component epicatechin gallate and analogues against methicillin resistant Staphylococcus aureus, J Antimicrob. Chemother., 2000, 46, 852–853 http://dx.doi.org/10.1093/jac/46.5.852CrossrefGoogle Scholar

  • [112] Zhao W.H., Hu Z., Okubo S., Hara Y. and Shimamura T., Mechanism of synergy between epicatechin gallate and β-Lactams against methicillin resistant Staphylococcus aureus, Antimicrob. Agents Chemother., 2001, 45(6), 1737–1742 http://dx.doi.org/10.1128/AAC.45.6.1737-1742.2001CrossrefGoogle Scholar

  • [113] Nicolson K., Evan G. and O’Toole P.W., Potentiation of methicillin activity against methicillin-resistant Staphylococcus aureus by diterpenes, FEMS Microbiol. Lett.,1999, 179(2), 233–239 http://dx.doi.org/10.1111/j.1574-6968.1999.tb08733.xCrossrefGoogle Scholar

  • [114] Smith E.C.J., Kaatz G.W., Seo S.M., Wareham N., Williamson E.M. et al., The phenolic diterpene totarol inhibits multidrug efflux pump activity in S. aureus. Antimicrob. Agents Chemother.,2007, 51(12): 4480–4483 http://dx.doi.org/10.1128/AAC.00216-07CrossrefGoogle Scholar

  • [115] Schmitz F.J., Fluit A.C., Luckefahr M., Engler B., Hofmann B., Verhoef J. et al. The effect of reserpine, an inhibitor of multidrug efflux pumps, on the in vitro activities of ciprofloxacin, sparfloxacin and moxifloxacin against clinical isolates of Staphylococcus aureus, J. Antimicrob. Chemother.,1998, 42, 807–810 http://dx.doi.org/10.1093/jac/42.6.807CrossrefGoogle Scholar

  • [116] Gibbons S. and Udo E.E., The effect of reserpine, a modulator of multidrug efflux pumps on the in vitro activity of tetracycline against clinical isolates of methicillin resistant Staphylococcus aureus possessing tet(k) determinant, Phytother. Res., 2000, 74,139–140 http://dx.doi.org/10.1002/(SICI)1099-1573(200003)14:2<139::AID-PTR608>3.0.CO;2-8CrossrefGoogle Scholar

  • [117] Stermitz F.R., Lorenz P., Tawara J.N., Zenewicz L.A., Lewis K., Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5-methoxyhydnocarpin, a multidrug pump inhibitor, Proc. Natl. Acad. Sci. USA, 2000,97,1433–1437 http://dx.doi.org/10.1073/pnas.030540597CrossrefGoogle Scholar

  • [118] Stermitz F.R., Matsuda J.T., Lorenz P., Mueller P., Zenewicz L., Lewis K., et al.,5-Methoxy-hydnocarpin and pheophorbide A: Berberis species components which potentiate berberine growth inhibition of resistant Staphylococcus aureus. J. Nat. Prod., 2000, 63, 1146–1149 http://dx.doi.org/10.1021/np990639kCrossrefGoogle Scholar

  • [119] Oluwatuyi M., Kaatz G.W. and Gibbons S., Antibacterial and resistance modifying activity of Rosmarinus officinalis, Phytochem., 2004, 65(2) 3249–3254 http://dx.doi.org/10.1016/j.phytochem.2004.10.009CrossrefGoogle Scholar

  • [120] Fujita M., Shiota S., Kuroda T., Tsutomu H., Takashi Y., Tohru M., et al., Remarkable synergies between baicalein and tetracycline and baicalein and β-Lactams against methicillin resistant Staphylococcus aureus, Microbiol. Immunol., 2005, 49, 391–396 CrossrefGoogle Scholar

  • [121] Khan I.A., Mirza Z.M., Kumar A., Verma V., Qazi G.N., Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus. Antimicrob. Agents Chemother., 2006, 50(2), 810–812 http://dx.doi.org/10.1128/AAC.50.2.810-812.2006CrossrefGoogle Scholar

  • [122] Smith P., Stewart J., Fyfe L., Influence of subinhibitory concentrations of plant essential oils on the production of enterotoxins A and B and α-toxin by Staphylococcus aureus, J. Med. Microbiol., 2004, 53, 1023–1027 http://dx.doi.org/10.1099/jmm.0.45567-0CrossrefGoogle Scholar

  • [123] Dickson R.A., Houghton P.J., Hylands P.J., Gibbons S.,; Antimicrobial, resistance-modifying effects, antioxidant and free radical scavenging activities of Mezoneuron benthamianum Baill., Securinega virosa Roxb. & Wlld. and Microglossa pyrifolia Lam., Phytother. Res., 2006, 20, 41–45 http://dx.doi.org/10.1002/ptr.1799CrossrefGoogle Scholar

  • [124] Braga C., Leite A.A.M., Xavier K.G.S., Takahashi, J A., Bemquerer, M P., Chartone-Souza E., et al. Synergic interaction between pomegranate extract and antibiotics against Staphylococcus aureus, Can. J Microbiol., 2005, 51(7), 541–547 http://dx.doi.org/10.1139/w05-022CrossrefGoogle Scholar

  • [125] Okusa P.N., Penge O., Devleeschouwer M., Duez P., Direct and indirect antimicrobial effects and antioxidant activity of Cordia gilletii De Wild (Boraginaceae), J. Ethnopharmacol., 2007, 112(3), 476–481 http://dx.doi.org/10.1016/j.jep.2007.04.003CrossrefGoogle Scholar

  • [126] Wright G.D., Resisting resistance: New chemical strategies for battling superbugs,Chem. Biol., 2000,7, R127–32 http://dx.doi.org/10.1016/S1074-5521(00)00126-5CrossrefGoogle Scholar

  • [127] Kristiansen J.E., The antimicrobial activity of psychotherapeutic drugs and stereo-isomeric analogues, Dan. Med. Bull.,1990,37,165–182 Google Scholar

  • [128] Kristiansen J.E., Chlorpromazine: non-antibiotics with antimicrobial activity-new insights in managing resistance?, Curr.Opin.Investig. Drugs,1993, 2, 587–591 Google Scholar

  • [129] Kristiansen J.E., Amaral L., The potential management of resistant infections with nonantibiotics, J. Antimicrob. Chemother., 1997, 40, 319–327 http://dx.doi.org/10.1093/jac/40.3.319CrossrefGoogle Scholar

  • [130] Kaatz G.W., Moudgal V.V., Seo S.M, Kristiansen J.E., Phenothiazines and thioxanthenes inhibit multidrug efflux pump activity in Staphylococcus aureus, Antimicrob. Agents Chemother., 2003, 47, 719–726 http://dx.doi.org/10.1128/AAC.47.2.719-726.2003CrossrefGoogle Scholar

  • [131] LAM K.S.,Discovery of novel metabolites from marine actinomycetes, Curr. Opin. Microbiol. 2006, 9, 245–251 CrossrefGoogle Scholar

  • [132] Gomber C., Saxena S.. Anti-staphylococcal potential of Callistemon rigidus, Central European Journal of Medicine, 2007, 2(1),79–88 http://dx.doi.org/10.2478/s11536-007-0004-8CrossrefGoogle Scholar

  • [133] Katarere D.R., Eloff J.N., Antibacterial and Antioxidant activity of Sutherlandia frutescens (Fabaceae) a reputed anti HIV/AIDS phytomedicine, Phytother. Res., 2005, 19(9), 779–781 http://dx.doi.org/10.1002/ptr.1719CrossrefGoogle Scholar

  • [134] Akinyemi K.O., Oladapo O., Okwara C.E., Ibe C.C. and Fasure K.A., Screening of crude extracts of six medicinal plants used in South-West Nigerian unorthodox medicine for anti-methicillin resistant Staphylococcus aureus activity, BMC Complementary and Alternative Medicine,2005, 5, 6 (doi:10.1186/1472-6882-5-6) http://dx.doi.org/10.1186/1472-6882-5-6CrossrefGoogle Scholar

  • [135] Nitta T., Arai T., Takamatsu H., Inatomi Y., Murata H., Iinuma M., Tanaka T., Ito T., Asai F., Ibrahim I., Nakanishi T. and Watabe K., Antibacterial Activity of Extracts Prepared from Tropical and Subtropical Plants on Methicillin-Resistant Staphylococcus aureus, Jour. Health Sciences,. 2002, 4, 273–276 http://dx.doi.org/10.1248/jhs.48.273CrossrefGoogle Scholar

  • [136] Gibbons S., Anti-Staphylococcal plant natural products, Nat. Prod. Rep., 2004, 21, 263–277 http://dx.doi.org/10.1039/b212695hCrossrefGoogle Scholar

  • [137] Schempp C.M., Pelz K., Wittmer A., Schöpf E., Simon J.C., Antibacterial activity of hyperforin from St John’s wort, against multiresistant Staphylococcus aureus and gram-positive bacteria, Lancet, 1999, 353(9170), 2129 http://dx.doi.org/10.1016/S0140-6736(99)00214-7CrossrefGoogle Scholar

  • [138] Iinuma M., Tosa H., Tanaka T., Asai F., Kobayashi Y., Shimano R., Miyauchi K., Antibacterial activity of Xanthones from guttiferous plants against Methicillin resistant Staphylococcus aureus, J. Pharm. Pharmacol.,1996,48(8), 861–65 CrossrefGoogle Scholar

  • [139] Keller M. and Zengler K. Tapping into microbial diversity, Nature Rev. Microb. 2004, 2(2),141–150. http://dx.doi.org/10.1038/nrmicro819CrossrefGoogle Scholar

  • [140] Demain A.L., Microbial natural products: Alive and well in 1998, Nature Biotechnol., 1998, 16, 3–4 http://dx.doi.org/10.1038/nbt0198-3CrossrefGoogle Scholar

  • [141] Demain A.L., Pharmacologically active secondary metabolites of microorganisms, Appl. Microbiol. Biotechnol., 1999, 52, 455–463 http://dx.doi.org/10.1007/s002530051546CrossrefGoogle Scholar

  • [142] Tulp M. and Bohlin L. Functional versus chemical diversity: is biodiversity important for drug discovery?, Trends Pharmacol. Sci., 2002, 23, 225–231 http://dx.doi.org/10.1016/S0165-6147(02)02007-2CrossrefGoogle Scholar

  • [143] Wang J., Soisson S.M., Young K., Shoop W., Kodali S., Galgoci A., Painter R.,et al., Platensimycin is a selective Fab F inhibitor with potent antibiotic properties, Nature, 2006, 441: 358–361 http://dx.doi.org/10.1038/nature04784CrossrefGoogle Scholar

  • [144] Bull A.T., Stach J.E., Ward A.C., Goodfellow M., Marine actinobacteria: Perspectives, challenges, future directions, Antonie Van Leeuwenhoek, 2005, 87, 65–79 http://dx.doi.org/10.1007/s10482-004-6562-8CrossrefGoogle Scholar

  • [145] Strobel G. and Daisy B., Bioprospecting for microbial endophytes and their natural products, Microb. Mol.Biol. Rev. 2003, 67(4), 491–502 http://dx.doi.org/10.1128/MMBR.67.4.491-502.2003CrossrefGoogle Scholar

  • [146] Castillo U., Strobel G.A., Ford E.J., Hess W.M., Porter H., Jensen J.B., et.al., Munumbicins, widespectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigricans, Microbiol., 2002, 148, 2675–2685 Google Scholar

  • [147] Lee L.Y, Miyamoto Y.J., McIntyre B.W., Hook M., McCrea K.W., McDevitt D., Brown E.L., The Staphylococcus Map Protein is an immunomodulator that interferes with T-cell mediated responses, J. Clin. Invest., 2002, 110, 1461–1471 CrossrefGoogle Scholar

  • [148] Shinefield H., Black S., Fattom A., Horwith G., Rasgon S., Ordonez J.,et al., Use of a Staphylococcus aureus conjugate vaccine in patients receiving hemodialysis, N. Engl. J. Med., 2002, 346, 491–496 http://dx.doi.org/10.1056/NEJMoa011297CrossrefGoogle Scholar

  • [149] Burnie J.P., Matthews R.C., Carter T., Beaulieu E., Donohoe M., Chapman C., Williamson P. and Hodgetts S.J., Identification of an Immunodominant ABC Transporter in Methicillin-Resistant Staphylococcus aureus Infections, Infect. Immun., 2000, 68(6), 3200–3209 http://dx.doi.org/10.1128/IAI.68.6.3200-3209.2000CrossrefGoogle Scholar

  • [150] Schuhardt V.T., Schindler C.A., Lysostaphin therapy in mice infected with Staphylococcus aureus., J Bacteriol., 1964,88, 815–816 Google Scholar

  • [151] Kusuma C.M., Kokai-Kun J.F., Comparison of Four Methods for Determining Lysostaphin Susceptibility of Various Strains of Staphylococcus aureus, Antimicrob. Agents Chemother., 2005, 49, 3256–3263 http://dx.doi.org/10.1128/AAC.49.8.3256-3263.2005CrossrefGoogle Scholar

  • [152] Kokai-Kun J.F., Walsh S.M., Chanturiya T., Mond J.J., Lysostaphin cream eradicates Staphylococcus aureus nasal colonization in a cotton rat model. Antimicrob. Agents Chemother., 2003, 47(5),1589–1597 http://dx.doi.org/10.1128/AAC.47.5.1589-1597.2003CrossrefGoogle Scholar

  • [153] Yang X., Cong-Ran L., Ren-Hui L., Wang Y.M., Zhang W.X., Chen H.Z., et al., In vitro activity of recombinant lysostaphin against Staphylococcus aureus isolates from hospitals in Beijing, China Journal of Medical Microbiology, 2007, 56, 71–76 http://dx.doi.org/10.1099/jmm.0.46788-0CrossrefGoogle Scholar

  • [154] Kiri N., Gordon A., Climo M.W., Combinations of Lysostaphin with β-Lactams are synergistic against oxacillin-resistant Staphylococcus epidermidis,Antimicrob.Agents Chemother., 2002, 6(6), 2017–2020 http://dx.doi.org/10.1128/AAC.46.6.2017-2020.2002CrossrefGoogle Scholar

  • [155] Vavra S.B., Roberta B.C., Robert S.D., Development of vancomycin and lysostaphin resistance in a methicillin-resistant Staphylococcus aureus isolate, J. Antimicrob. Chemother., 2001,48, 617–625 http://dx.doi.org/10.1093/jac/48.5.617CrossrefGoogle Scholar

  • [156] Stranden A., Ehlert K., Labischinski H., Berger-Bachi B., Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a fem AB null mutant of methicillin-resistant Staphylococcus aureus,J. Bacteriol.,1997,179, 9–16 Google Scholar

  • [157] Ling B. and Berger-Bachi, B., Increased overall antibiotic susceptibility in Staphylococcus aureus femAB null mutants. Antimicrob. Agents Chemother., 1998, 42,936–938 Google Scholar

  • [158] Schneider M.M.S., Berger-Bächi B., Tossi A., Sahl A.G., Wiedemann I., In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid II-Gly5) of Staphylococcus aureus, Mol. Microbiol., 2004, 53(2), 675–685 http://dx.doi.org/10.1111/j.1365-2958.2004.04149.xGoogle Scholar

  • [159] Hutchinson C.R., Combinatorial biosynthesis for new drug discovery, Curr.Opin Microb.,1998, 1, 319–329 http://dx.doi.org/10.1016/S1369-5274(98)80036-2CrossrefGoogle Scholar

  • [160] Borchardt J.K., Genetic engineering may keep one of the richest drug gold mines from being played out, Modern Drug Discovery,1999, 2(4), 22–29 Google Scholar

  • [161] Jacobsen J.R., Khosla C.,New directions in metabolic engineering.,Curr.Opin. Chem. Biol.,1998, 2,133–137 http://dx.doi.org/10.1016/S1367-5931(98)80045-8CrossrefGoogle Scholar

  • [162] Saxena, S. and Kumar D., Human pathogenic bacteria-plant interaction: Potential as novel antimicrobials, International Journal of Biomedical and Pharmaceutical Sciences, 2007,1(2), 120–123 Google Scholar

  • [163] Baltz R.H., Vivian M. Stephen K.W., Natural products to drugs: daptomycin and related lipopeptide antibiotics, Nat. Prod. Rep., 2005, 22, 717–717 http://dx.doi.org/10.1039/b416648pCrossrefGoogle Scholar

  • [164] Yin X, Zabriskie TM., The enduracidin biosynthetic gene cluster from Streptomyces fungicidicus, Microbiol., 2006, 152, 2969–2983 http://dx.doi.org/10.1099/mic.0.29043-0CrossrefGoogle Scholar

About the article

Published Online: 2010-01-29

Published in Print: 2010-02-01

Citation Information: Open Medicine, ISSN (Online) 2391-5463, DOI: https://doi.org/10.2478/s11536-009-0079-5.

Export Citation

© 2009 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Patrick O. Asekunowo, Rosenani A. Haque, and Mohd R. Razali
Transition Metal Chemistry, 2015, Volume 40, Number 1, Page 79
Malay Patra, Gilles Gasser, and Nils Metzler-Nolte
Dalton Transactions, 2012, Volume 41, Number 21, Page 6350
Sanjai Saxena and Charu Gomber
Molecular and Cellular Biochemistry, 2010, Volume 341, Number 1-2, Page 217

Comments (0)

Please log in or register to comment.
Log in