Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Medicine

formerly Central European Journal of Medicine

Editor-in-Chief: Darzynkiewicz, Zbigniew

IMPACT FACTOR 2018: 1.221

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.329
Source Normalized Impact per Paper (SNIP) 2018: 0.479

ICV 2017: 152.94

Open Access
See all formats and pricing
More options …
Volume 6, Issue 5


Volume 10 (2015)

Frequency of Met129Val allele associated with predisposition to variant Creutzfeldt - Jakob disease in the Middle ages

Magdalena Kołodziejczak-Przekwas / Henryk Witas
Published Online: 2011-08-09 | DOI: https://doi.org/10.2478/s11536-011-0053-x


Direct deciphering of past genes may reflect real characteristics of forebears, even of whole ancestral populations. This is obviously one of the most powerful and direct methods to follow evolutionary changes of the species. We attempted to apply ancient DNA (aDNA) technology to analyse a polymorphism at codon 129 of PRNP which probably plays a role in susceptibility to a variant Creutzfeldt - Jakob (vCJD) disease. As previously suggested, 129 Val-Val and heterozygous individuals are nearly completely protected from vCJD, in contrast to 129 Met-Met homozygous ones. We examined the frequency of the alleles encoding methionine and valine at codon 129 in DNA isolated from 100 skeletal remains of individuals who lived between 10th and 13th century. Our results confirmed significant alteration in previously studied alleles frequency between the populations of medieval Polish Lands and contemporaries. The calculated frequency of the alleles in medieval Poland (51% as compared to contemporary 65% for 129Met, and appropriately 49% vs. 35% for 129Val) implies a selection process that shaped 129 Met-Val distribution profiles in the Middle Ages. We suggest that the study of the genetic relationship between past and present-day populations could be a useful tool to follow allelic composition of particular genes (here: of the PRNP) over a span of time which may contribute to the understanding of evolutionary and selective mechanisms including epidemiological cases.

Keywords: Ancient DNA (aDNA); Prion; Prion protein gene (PRNP); Variant Creutzfeldt - Jakob disease (vCJD)

  • [1] Palmer MS, Dryden AJ, Hughes JT, Collinge J. Homozygous prion protein genotype predisposes to sporadic Creutzfeldt - Jakob disease. Nature, 1991, 160: 1179–1189 Google Scholar

  • [2] Laplanche JL, Hachimi KH, Durieux I, Thuillet P, Defebvre L, Delasneire-Laupretre N, et al. Prominent psychiatric features and early onset in an inherited prion disease with a new insertional mutation in the prion protein gene. Brain, 1999, 122(Pt 12): 2375–2386 http://dx.doi.org/10.1093/brain/122.12.2375CrossrefGoogle Scholar

  • [3] Soldevila M, Calafell F, Andres AM, Yagule J, Helgason A, Stefansson K, et al. Prion susceptibility and protective alleles exhibit marked geographic differences. Human mutation, 2003, 22: 104–105 http://dx.doi.org/10.1002/humu.9157CrossrefGoogle Scholar

  • [4] Zeidler M, Stewart G, Will RG. Geographical disrtibution of variant CJD in the UK (exluding Northern Irleand). Lancet, 1999, 353: 18–21 http://dx.doi.org/10.1016/S0140-6736(98)08062-3CrossrefGoogle Scholar

  • [5] Collinge J, Sidle KC, Meads J, Ironside J, Hill AF. Molecular analyses of prion strain variation and aetiology of new variant CJD. Nature, 1996, 386: 685–690 http://dx.doi.org/10.1038/383685a0CrossrefGoogle Scholar

  • [6] Valleron AJ, Boelle PY, Will R, Cesbron JY. Estimation of epidemic size and incubation time based on age characteristic of vCJD in the United Kingdom. Science, 2001, 294: 1726–1728 http://dx.doi.org/10.1126/science.1066838CrossrefGoogle Scholar

  • [7] Andrews NF, Farrington CP, Ward HJ, Cousens SN, Smith PG, Molesworth AM, et al. Deaths from variant Creutzfeldt - Jakob disease in the UK. Lancet, 2003, 361: 751–752 http://dx.doi.org/10.1016/S0140-6736(03)12632-3CrossrefGoogle Scholar

  • [8] Soldevila M, Andres AM, Ramirez-Soriano A, Marques-Bonet T, Calafell F, Navarro A, et al. The prion protein gene in humans revisited: Lessons from a worldwide resequencing study. Genome Research, 2006, 16: 231–239 http://dx.doi.org/10.1101/gr.4345506CrossrefGoogle Scholar

  • [9] Mead S. Prion disease genetics. European Journal of Human Genetics, 2006, 14: 273–281 http://dx.doi.org/10.1038/sj.ejhg.5201544CrossrefGoogle Scholar

  • [10] Harris EE, Hey J. Human populations show reduce DNA sequence variation at the factor IX locus. Curr Biol, 2001, 15: 11 (10);774–778 CrossrefGoogle Scholar

  • [11] Martinez-Arias R, Mateu E, Bertranpetit J, Calafell F. Profiles of accepted mutation: from neutrality in a pseudogene to disease-causing mutation on its homologous gene. Hum Genet., 2001, Jul;109(1):7–10. http://dx.doi.org/10.1007/s004390100523CrossrefGoogle Scholar

  • [12] Pääbo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, Rohland N, et al. Genetic analyses from ancient DNA. Annu Rev Genet., 2004, 38: 645–679 http://dx.doi.org/10.1146/annurev.genet.37.110801.143214CrossrefGoogle Scholar

  • [13] Collins M.J., Galley P. Towards an optimal method of archeological collagen extraction; the influence of pH and grinding. Anc. Biomol., 1998, 2: 209–222 Google Scholar

  • [14] Kemp BM, Smith DG. Use of bleach to eliminate contaminating DNA from the surface of bones and teeth. Foresnsic Science International, 2005, 154: 53–61 http://dx.doi.org/10.1016/j.forsciint.2004.11.017CrossrefGoogle Scholar

  • [15] Poinar HN, Hofreiter M, Spaulding WG, Martin PS, Stankiewicz BA, Bland H, et al. Molecular coproscopy:dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science, 1998, 281: 402–406. http://dx.doi.org/10.1126/science.281.5375.402CrossrefGoogle Scholar

  • [16] Vasan S, Zhang X, Kapurniotu A, Bernhagen J, Teichberg S, Basgen J, et al. An agent cleaving glucose derived protein crosslinks invitro and in vivo. Nature, 1996, 382: 275–278. http://dx.doi.org/10.1038/382275a0CrossrefGoogle Scholar

  • [17] Hofreiter M, Jaenicke V, Serre S, von Haeseler A, Pääbo S. DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res., 2001, 29: 4793–4799 http://dx.doi.org/10.1093/nar/29.23.4793CrossrefGoogle Scholar

  • [18] Bratosiewicz J, Liberski PP, Kulczycki J, Kordek. Codon 129 polymorphism of the PRNP gene in normal Polish population and in Creutzfeldt - Jakob disease, and the serach for new mutations in PRNP gene. Acta Neurobiol. Exp., 2001, 61: 151–156 Google Scholar

  • [19] Grzeszczak W, Juźwiak R. Rozkład polimorfizmu kodonu 129 genu kodujłcego białko prionu w po pulacji polskiej. Ann. Acad. Med. Siles, 2005;59: 45–52 (in Polish) Google Scholar

  • [20] Collinge J. Variant Creutzfeldt - Jakob disease. Lancet, 1999, 354(9175): 317–323 http://dx.doi.org/10.1016/S0140-6736(99)05128-4Web of ScienceCrossrefGoogle Scholar

  • [21] Head MW, Bunn TJR, Bishop MT, McLoughlin V, Lowrie S, McKimmie CS, et al. Prion Protein Heterogenity in Sporadic but not Variant Creutzfeldt - Jakob disease: U.K. Cases 1991–2002. Ann Neurol., 2004, 55:851–859 http://dx.doi.org/10.1002/ana.20127CrossrefGoogle Scholar

  • [22] Mead S, Stumpf MPH, Whitfield J, Beck JA, Poulter M, Campbell T, et al. Balancing selection at the prion protein gene consistent with prehistoric kurulike epidemics. Science, 2003, 300: 640–643 http://dx.doi.org/10.1126/science.1083320CrossrefGoogle Scholar

  • [23] Tahiri-Alaoui A, Gill AC, Disterer P, James W. Methionine 129 variant of human prion protein oligomerizes more rapidly than the valine 129 variant. The Journal of Biological Chemistry, 2004, 279: 31390–31397 http://dx.doi.org/10.1074/jbc.M401754200CrossrefGoogle Scholar

  • [24] Cervenakova L, Goldfarb L, Garruto R, Lee HS, Gajdusek CD, Brown P. Phenotype-genotype studies in kuru: implications for new variant Creutzfeldt - Jakob disease. Proc Natl Acad Sci USA, 1998, 95: 13239–13241 http://dx.doi.org/10.1073/pnas.95.22.13239CrossrefGoogle Scholar

  • [25] Harris M. Cannibalism and Kings. New York: Random House 1977 Google Scholar

  • [26] Culotta E. Neanderthals were cannibals, bones show. Science 1999, Oct 1; 286, 5437 http://dx.doi.org/10.1126/science.286.5437.65CrossrefGoogle Scholar

  • [27] Brown P, Gajdusek DC. Survival of scrapie virus after three years’ interment. Lancet, 1991, 337: 269–270 http://dx.doi.org/10.1016/0140-6736(91)90873-NCrossrefGoogle Scholar

  • [28] Brown P. BSE: The final resting place. Lancet, 1998, 351: 1146–1147 http://dx.doi.org/10.1016/S0140-6736(05)79115-7CrossrefGoogle Scholar

  • [29] Miller MW, Williams ES, Hobbs NT, Wolfe LL. Environmental sources of prion transmission in mule deer. Emerg Infect Dis., 2004, 10: 1003–1006 CrossrefGoogle Scholar

  • [30] Seeger H, Heikenwalder M, Zeller N, Kranich J, Schwarz P. Coincident scrapie infection and nephritis lead to urinary prion excrection. Science, 2005, 310: 324–326 http://dx.doi.org/10.1126/science.1118829CrossrefGoogle Scholar

  • [31] Johnson CJ, Pedersen JA, Chappell RJ, McKenzie D, Aiken JM. Oral transmissibility of prion disease is enhanced by binding to soil particles. PLoS Pathogenes, 2007, 3: 0874–0881 Google Scholar

  • [32] Johnson CJ, Phillips KE, Schramm PT, McKenzie D, Aiken JM, Pedersen JA. Prions adhere to soil minerals and remain infectious. PLoS Pathogenes, 2006, 2: 0296–030 Google Scholar

About the article

Published Online: 2011-08-09

Published in Print: 2011-10-01

Citation Information: Open Medicine, Volume 6, Issue 5, Pages 602–607, ISSN (Online) 2391-5463, DOI: https://doi.org/10.2478/s11536-011-0053-x.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in