Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Medicine

formerly Central European Journal of Medicine

Editor-in-Chief: Darzynkiewicz, Zbigniew


IMPACT FACTOR 2018: 1.221

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.329
Source Normalized Impact per Paper (SNIP) 2018: 0.479

ICV 2017: 152.94

Open Access
Online
ISSN
2391-5463
See all formats and pricing
More options …
Volume 6, Issue 5

Issues

Volume 10 (2015)

Melanocortin system in cancer-related cachexia

Julie Bienertová-Vašků
  • Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5 A18, 625 00, Brno, Czech Republic
  • Department of Laboratory Medicine, Masaryk Memorial Cancer Institute, Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Petr Bienert
  • Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5 A18, 625 00, Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dalibor Valík / Anna Vašků
  • Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5 A18, 625 00, Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-08-09 | DOI: https://doi.org/10.2478/s11536-011-0057-6

Abstract

The melanocortin system plays a pivotal role in the regulation of appetite and energy balance. It was recognized to play an important role in the development of cancer-related cachexia, a debilitating condition characterized by progressive body wasting associated with anorexia, increased resting energy expediture and loss of fat as well as lean body mass that cannot be simply prevented or treated by adequate nutritional support.

The recent advances in understanding of mechanisms underlying cancer-related cachexia led to consequent recognition of the melanocortin system as an important potential therapeutic target. Several molecules have been made available for animal experiments, including those with oral bioavailability, that act at various checkpoints of the melanocortin system and that might confer singificant benefits for the patients suffering from cancer-related cachexia. The application of melanocortin 4 receptor antagonists/agouti-related peptide agonists has been however restricted to animal models and more pharmacological data will be necessary to progress to clinical trials on humans. Still, pharmacological targeting of the melanocortin system seem to represent an elegant and promising way of treatment of cancer-related cachexia.

Keywords: Melanocortins; Agouti-related peptide; Cancer; Cachexia

  • [1] Argilés J.M., Moore-Carrasco R., Busquets S., López-Soriano F.J. Catabolic mediators as targets for cancer cachexia. Drug Discov Today., 2003, 18, 838–844 http://dx.doi.org/10.1016/S1359-6446(03)02826-5CrossrefGoogle Scholar

  • [2] Tisdale M.J. Cachexia in cancer patients. Nat Rev Cancer., 2002, 11, 862–871 http://dx.doi.org/10.1038/nrc927CrossrefGoogle Scholar

  • [3] DeWys W.D., Weight loss and nutritional abnormalities in cancer patients: incidence, severity and significance. In: Clinics in Oncology, Calman K.C., Fearon K.C.H. (Eds.) London: Saunders, vol. 5, no. 2, p. 251–261., 1986 Google Scholar

  • [4] Laviano A, Meguid MM, Inui A, Muscaritoli M, Rossi-Fanelli F. Therapy insight: Cancer anorexia-cachexia syndrome—when all you can eat is yourself. Nat Clin Pract Oncol., 2005, 3, 158–165 http://dx.doi.org/10.1038/ncponc0112CrossrefGoogle Scholar

  • [5] Evans W.J., Morley J.E., Argiles J., Bales C., Baracos V., et al. Cachexia: A new definition. Clin Nutr 27., 2008, 793–799 http://dx.doi.org/10.1016/j.clnu.2008.06.013CrossrefGoogle Scholar

  • [6] Tisdale M.J. Are tumoral factors responsible for host tissue wasting in cancer cachexia? Future Oncol., 2010, 4, 503–513 http://dx.doi.org/10.2217/fon.10.20CrossrefGoogle Scholar

  • [7] Fearon K.C.H., Voss A.S., Hustend D.S. Definition of cancer cachexia: effect of weight loss, reduced food intake and systemic inflammation on functional status and prognosis. Am J Clin Nutr., 2006, 83, 1345–1350 Google Scholar

  • [8] DeWys W.D. Weight loss and nutritional abnormalities in cancer patients: incidence, severity and significance. In: Clinics in Oncology, edited by Calman KC and Fearon KCH. London: Saunders, 1986, vol. 5, no. 2, p. 251–261 Google Scholar

  • [9] Bing C., Brown M., King P., Collins P., Tisdale M.J., Williams G. Increased gene expression of brown fat uncoupling protein (UCP)1 and skeletal muscle UCP2 and UCP3 in MAC16-induced cancer cachexia. Cancer Res. 2000, 9, 2405–2410 Google Scholar

  • [10] Kulstad R., Schoeller D.A. The energetics of wasting diseases. Curr Opin Clin Nutr Metab Care., 2007, 4, 488–493 PubMedCrossrefGoogle Scholar

  • [11] Bennani-Baiti N., Davis M.P.. Cytokines and cancer anorexia cachexia syndrome. Am J Hosp Palliat Care. 2008, 5, 407–411 http://dx.doi.org/10.1177/1049909108315518CrossrefGoogle Scholar

  • [12] Yavuzsen T., Davis M.P., Walsh D., LeGrand S., Lagman R. Systematic review of the treatment of cancer-associated anorexia and weight loss. J Clin Oncol., 2005, 23, 8500–8511 http://dx.doi.org/10.1200/JCO.2005.01.8010CrossrefGoogle Scholar

  • [13] DeBoer M.D. Update on melanocortin interventions for cachexia: progress toward clinical application. Nutrition., 2010, 2,146–151 http://dx.doi.org/10.1016/j.nut.2009.07.003CrossrefGoogle Scholar

  • [14] Scarlett J.M., Marks D.L. The use of melanocortin antagonists in cachexia of chronic disease. Expert Opin Investig Drugs., 2005, 14,1233–1239 http://dx.doi.org/10.1517/13543784.14.10.1233CrossrefGoogle Scholar

  • [15] Marks D.L., Ling N., Cone R.D. Role of the central melanocortin system in cachexia. Cancer Res 2001;61:1432–1438 Google Scholar

  • [16] Wisse B.E., Frayo R.S., Schwartz M.W., Cummings D.E. Reversal of cancer anorexia by blockade of central melanocortin receptors in rats. Endocrinology., 2001,142, 3292–3301 http://dx.doi.org/10.1210/en.142.8.3292CrossrefGoogle Scholar

  • [17] Tung Y.C., Yeo G.S. Central melanocortin signaling regulates cholesterol. Nat Neurosci., 2010, 7, 779–780 http://dx.doi.org/10.1038/nn0710-779CrossrefGoogle Scholar

  • [18] Stewart P.M., Boulton A., Kumar S., Clark P.M., Shackleton C.H.. Cortisol metabolism in human obesity: impaired cortisone—>cortisol conversion in subjects with central adiposity. J Clin Endocrinol Metab., 1999, 3, 1022–1027 http://dx.doi.org/10.1210/jc.84.3.1022CrossrefGoogle Scholar

  • [19] Cone R.D. Anatomy and regulation of the central melanocortin system. Nat Neurosci., 2005, 5, 571–578 http://dx.doi.org/10.1038/nn1455CrossrefGoogle Scholar

  • [20] Whitaker K.W., Reyes T.M. Central blockade of melanocortin receptors attenuates the metabolic and locomotor responses to peripheral interleukin-1beta administration. Neuropharmacology., 2008, 54, 509–520 http://dx.doi.org/10.1016/j.neuropharm.2007.10.014CrossrefGoogle Scholar

  • [21] Ellacott K.L., Halatchev I.G., Cone R.D. Interactions between gut peptides and the central melanocortin system in the regulation of energy homeostasis. Peptides., 2006, 2, 340–349 http://dx.doi.org/10.1016/j.peptides.2005.02.031CrossrefGoogle Scholar

  • [22] Marks D.L., Cone R.D. The role of the melanocortin-3 receptor in cachexia. Ann N Y Acad Sci., 2003, 994, 258–266 http://dx.doi.org/10.1111/j.1749-6632.2003.tb03188.xCrossrefGoogle Scholar

  • [23] Cone R.D. Studies on the physiological functions of the melanocortin system. Endocr Rev., 2006, 7, 736–749 CrossrefGoogle Scholar

  • [24] Butler A.A., Marks D.L., Fan W., Kuhn C.M., Bartolome M., Cone R.D. Melanocortin-4 receptor is required for acute homeostatic responses to increased dietary fat. Nat Neurosci., 2001, 6, 605–611 http://dx.doi.org/10.1038/88423CrossrefGoogle Scholar

  • [25] Tung Y.C., Piper S.J., Yeung D., O’Rahilly S., Coll A.P. A comparative study of the central effects of specific proopiomelancortin (POMC)-derived mela nocortin peptides on food intake and body weight in pomc null mice. Endocrinology., 2006, 12, 5940–5947 http://dx.doi.org/10.1210/en.2006-0866CrossrefGoogle Scholar

  • [26] Coll A.P. Effects of pro-opiomelanocortin (POMC) on food intake and body weight: mechanisms and therapeutic potential? Clin Sci (Lond)., 2007, 4, 171–182 Google Scholar

  • [27] Jackson P.J., Yu B., Hunrichs B., Thompson D.A., Chai B., Gantz I., Millhauser G.L. Chimeras of the agouti-related protein: insights into agonist and antagonist selectivity of melanocortin receptors. Peptides., 2005, 10, 1978–1987 http://dx.doi.org/10.1016/j.peptides.2004.12.036CrossrefGoogle Scholar

  • [28] Fan W., Boston B.A., Kesterson R.A., Hruby V.J., Cone R.D. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature, 1997, 385,165–168 http://dx.doi.org/10.1038/385165a0CrossrefGoogle Scholar

  • [29] Ollmann M.M., Wilson B.D., Yang Y.K., Kerns J.A., Chen Y., Gantz I., et al. Antagonism of central melanocortin receptors in vitro and in vivo by agoutirelated protein. Science,1997, 278,135–138 http://dx.doi.org/10.1126/science.278.5335.135CrossrefGoogle Scholar

  • [30] Farooqi I.S., Keogh J.M., Yeo G.S., Lank E.J., Cheetham T., O’Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med., 2003, 348, 1085–1095 http://dx.doi.org/10.1056/NEJMoa022050CrossrefGoogle Scholar

  • [31] Olszewski P.K., Wickwire K., Wirth M.M., Levine A.S., Giraudo S.Q. Agouti-related protein: appetite or reward? Ann N Y Acad Sci., 2003, 994,187–191 http://dx.doi.org/10.1111/j.1749-6632.2003.tb03179.xCrossrefGoogle Scholar

  • [32] Hagan M.M., Rushing P.A., Benoit S.C., Woods S.C., Seeley R.J. Opioid receptor involvement in the effect of AgRP — (83–132) on food intake and food selection. Am J Physiol Regul Integr Comp Physiol., 2001, 3,:R814–R821 Google Scholar

  • [33] Butler A.A., Cone R.D. Knockout studies defining different roles for melanocortin receptors in energy homeostasis. Ann N Y Acad Sci., 2003, 994, 240–245. http://dx.doi.org/10.1111/j.1749-6632.2003.tb03186.xCrossrefGoogle Scholar

  • [34] Ste Marie L., Miura G.I., Marsh D.J., Yagaloff K., Palmiter R.D. A metabolic defect promotes obesity in mice lacking melanocortin-4 receptors. Proc Natl Acad Sci U S A., 2000,97,12339–12344 http://dx.doi.org/10.1073/pnas.220409497CrossrefGoogle Scholar

  • [35] Stütz A.M., Morrison C.D., Argyropoulos G. The agouti-related protein and its role in energy homeostasis. Peptides., 2005, 10,1771–1781 http://dx.doi.org/10.1016/j.peptides.2004.12.024CrossrefGoogle Scholar

  • [36] Ilnytska O., Argyropoulos G. The role of the Agouti-Related Protein in energy balance regulation. Cell Mol Life Sci., 2008, 17, 2721–2731 http://dx.doi.org/10.1007/s00018-008-8104-4CrossrefGoogle Scholar

  • [37] Qian S., Chen H., Weingarth D., Trumbauer ME., Novi D.E., Guan X. et al. Neither Agouti-Related Protein nor Neuropeptide Y Is Critically Required for the Regulation of Energy Homeostasis in Mice. Mol. Cell. Biol., 2002, 22, 5027–5035 http://dx.doi.org/10.1128/MCB.22.14.5027-5035.2002CrossrefGoogle Scholar

  • [38] Wortley K.E., Anderson K.D., Yasenchak J., Murphy A., Valenzuela D., Diano S. et al. Agoutirelated protein-deficient mice display an age-related lean phenotype. Cell. Metab., 2005, 2, 421–427 http://dx.doi.org/10.1016/j.cmet.2005.11.004CrossrefGoogle Scholar

  • [39] Vaughan C.H., Moore M.C., Haskell-Luevano C., Rowland N.E. Meal patterns and foraging in melanocortin receptor knockout mice. Physiol Behav., 2005, 1, 129–133 http://dx.doi.org/10.1016/j.physbeh.2004.10.016CrossrefGoogle Scholar

  • [40] Koegler F.H., Schaffhauser R.O., Mynatt R.L., York D.A., Bray G.A. Macronutrient diet intake of the lethal yellow agouti (Ay/a) mouse. Physiol Behav., 1999, 5, 809–812 http://dx.doi.org/10.1016/S0031-9384(99)00104-3CrossrefGoogle Scholar

  • [41] Cheung W.W., Kuo H.J., Markison S., Chen C., Foster A.C., Marks D.L. et al. Peripheral administration of the melanocortin-4 receptor antagonist NBI-12i ameliorates uremia-associated cachexia in mice. J Am Soc Nephrol., 2007, 9, 2517–2524 http://dx.doi.org/10.1681/ASN.2006091024CrossrefGoogle Scholar

  • [42] Bowe D.D., Scarlett J.M., Basra A.K., Steiner R.A., Marks D.L. Blockade of central melanocortin signaling promotes accumulation of lean body mass in rodent models of chronic heart failure. J Investig Med., 2007, 55:S77 Google Scholar

  • [43] Basra A.K., Scarlett J.M., Bowe D.D., Steiner R.A., Marks D.L. Central melanocortin blockade attenuates cardiac cachexia in a rat model of chronic heart failure. J Investig Med., 2008, 56, 229–230 Google Scholar

  • [44] Nicholson J.R., Kohler G., Schaerer F., Senn C., Weyermann P., Hofbauer K.G. Peripheral administration of a melanocortin 4-receptor inverse agonist prevents loss of lean body mass in tumor-bearing mice. J Pharmacol Exp Ther., 2006, 2, 771–777 http://dx.doi.org/10.1124/jpet.105.097725Google Scholar

  • [45] Weyermann P., Dallmann R., Magyar J., Anklin C., Hufschmid M., Dubach-Powell J. et al. Orally available selective melanocortin-4 receptor antagonists stimulate food intake and reduce cancer-induced cachexia in mice. PLoS One., 2009; 4(3), e4774 http://dx.doi.org/10.1371/journal.pone.0004774CrossrefGoogle Scholar

  • [46] Tung Y.C., Piper S.J., Yeung D., O’Rahilly S. and Coll A.P. A comparative study of the central effects of specific proopiomelancortin (POMC)-derived melanocortin peptides on food intake and body weight in pomc null mice. Endocrinology 2006, 147, 5940–5947 http://dx.doi.org/10.1210/en.2006-0866CrossrefGoogle Scholar

  • [47] Hoggard N., Rayner D.V., Johnston S.L., Speakman J.R. Peripherally administered [Nle4,D-Phe7]-alpha-melanocyte stimulating hormone increases resting metabolic rate, while peripheral agouti-related protein has no effect, in wild type C57BL/6 and ob/ob mice. J Mol Endocrinol 2004; 33, 693–703 http://dx.doi.org/10.1677/jme.1.01632Google Scholar

  • [48] Markison S., Foster A.C., Chen C., Brookhart G.B., Hesse A., Hoare S.R. The regulation of feeding and metabolic rate and the prevention of murine cancer cachexia with a small-molecule melanocortin-4 receptor antagonist. Endocrinology., 2005, 146(6),2766–2773 http://dx.doi.org/10.1210/en.2005-0142CrossrefGoogle Scholar

  • [49] Santhera Pharmaceuticals (Switzerland) AG (2008) Preparation of imidazopyridines as melanocortin-4 receptor antagonists. WO 2008/116665 A1 Google Scholar

  • [50] Santhera Pharmaceuticals (Switzerland) AG (2009) Subsituted heteroarylpiperidine derivatives as melanocortin-4 receptor modulators. WO 2009/010299 A1 Google Scholar

  • [51] Joppa M.A., Ling N., Chen C., Gogas K.R., Foster A.C., Markison S. Central administration of peptide and small molecule MC4 receptor antagonists induce hyperphagia in mice and attenuate cytokine-induced anorexia. Peptides., 2005, 26(11), 2294–2301 http://dx.doi.org/10.1016/j.peptides.2005.03.002CrossrefGoogle Scholar

  • [52] Chen C., Tucci F.C., Jiang W., Tran J.A., Fleck B.A., Hoare S.R. Pharmacological and pharmacokinetic characterization of 2-piperazine-alpha-isopropyl benzylamine derivatives as melanocortin-4 receptor antagonists. Bioorg Med Chem., 2008,16(10), 5606–5618 http://dx.doi.org/10.1016/j.bmc.2008.03.072CrossrefGoogle Scholar

  • [53] Vos T.J., Caracoti A., Che J.L., Dai M., Farrer C.A., Forsyth N.E., et al. Identification of 2-[2-[2-(5-bromo-2 — methoxyphenyl)-ethyl]-3-fluorophenyl]-4,5-dihydro-1H-imidazole (ML00253764), a small molecule melanocortin 4 receptor antagonist that effectively reduces tumor-induced weight loss in a mouse model. J Med Chem., 2004,47(7),1602–164 http://dx.doi.org/10.1021/jm034244gGoogle Scholar

  • [54] Cheung W.W., Kuo H.J., Markison S., Chen C., Foster A.C., Marks D.L. et al. Peripheral administration of the melanocortin-4 receptor antagonist NBI-12i ameliorates uremia-associated cachexia in mice. J Am Soc Nephrol., 2007, 18(9), 2517–2524 http://dx.doi.org/10.1681/ASN.2006091024CrossrefGoogle Scholar

  • [55] Nijenhuis W.A., Oosterom J., Adan R.A.. AgRP(83–132) acts as an inverse agonist on the human-melanocortin-4 receptor. Mol Endocrinol., 2001, 15(1), 164–171 http://dx.doi.org/10.1210/me.15.1.164CrossrefGoogle Scholar

  • [56] Oosterom J., Garner K.M., den Dekker W.K., Nijenhuis W.A., Gispen W.H., Burbach J.P, et al. Common requirements for melanocortin-4 receptor selectivity of structurally unrelated melanocortin agonist and endogenous antagonist, Agouti protein. J Biol Chem., 2001, 276(2), 931–936 http://dx.doi.org/10.1074/jbc.M007261200CrossrefGoogle Scholar

  • [57] Adan R.A., Tiesjema B., Hillebrand J.J., la Fleur S.E., Kas M.J., de Krom M. The MC4 receptor and control of appetite. Br J Pharmacol., 2006, 149(7), 815–827 http://dx.doi.org/10.1038/sj.bjp.0706929CrossrefGoogle Scholar

  • [58] Joseph C.G., Bauzo R.M., Xiang Z., Shaw A.M., Millard W.J., Haskell-Luevano C. Elongation studies of the human agouti-related protein (AGRP) core decapeptide (Yc[CRFFNAFC]Y) results in antagonism at the mouse melanocortin-3 receptor. Peptides., 2003, 24(2), 263–270 http://dx.doi.org/10.1016/S0196-9781(03)00030-5CrossrefGoogle Scholar

  • [59] Fu L.Y., van den Pol A.N. Agouti-related peptide and MC3/4 receptor agonists both inhibit excitatory hypothalamic ventromedial nucleus neurons. J Neurosci., 2008, 28(21), 5433–5449 http://dx.doi.org/10.1523/JNEUROSCI.0749-08.2008CrossrefGoogle Scholar

  • [60] Tisdale M.J. Clinical anticachexia treatments. Nutr Clin Pract., 2006, 21(2), 168–174 http://dx.doi.org/10.1177/0115426506021002168CrossrefGoogle Scholar

  • [61] Rigas J.R., Schuster M., Orlov S.V., Milovanovic B., Prabhash K., Smith J.T. and the ALD518 study group. Affect of ALD518, a humanized anti-IL-6 antibody, on lean body mass loss and symptoms in patients with advanced non-small cell lung cancer (NSCLC): Results of a phase II randomized, double-blind safety and efficacy trial. J Clin Oncol 28 (1534). http://www.asco.org/ASCOv2/Meetings/Abstracts?&vmview=abst_detail_view&confID=74&abstractID=50646 Google Scholar

  • [62] Steiner M.S., Barnette K.G., Hancock M.L., Dodson S.T., Rodriguez D., Morton R.A.; GTx, Inc., Memphis, TN (June 2010). „Effect of GTx-024, a selective androgen receptor modulator (SARM), on stair climb performance and quality of life (QOL) in patients with cancer cachexia”. J Clin Oncol 28 (1534) http://www.asco.org/ASCOv2/Meetings/Abstracts?&vmview=abst_detail_view&confID=74&abstractID=52947 Google Scholar

  • [63] Bhattacharyya G.S., Julka P.K., Bondarde S., Naik R., Ranade A., Bascomb N. et al. (June 2010). „Phase II study evaluating safety and efficacy of coadministering propranolol and etodolac for treating cancer cachexia”. J Clin Oncol 28 (1534). http://www.asco.org/ASCOv2/Meetings/Abstracts?&vmview=abst_detail_view&confID=74&abstractID=49474 Google Scholar

  • [64] Zhou X., Wang J.L., Lu J., Song Y., Kwak K.S., Jiao Q. et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell., 2010, 142(4), 531–543. http://dx.doi.org/10.1016/j.cell.2010.07.011CrossrefGoogle Scholar

  • [65] Trials for cachexia treatment. Available at: http://clinicaltrials.gov/ct2/results?term¼cachexia&pg¼4. Accessed September 1, 2010 Google Scholar

About the article

Published Online: 2011-08-09

Published in Print: 2011-10-01


Citation Information: Open Medicine, Volume 6, Issue 5, Pages 550–557, ISSN (Online) 2391-5463, DOI: https://doi.org/10.2478/s11536-011-0057-6.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in