Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Medicine

formerly Central European Journal of Medicine

Editor-in-Chief: Darzynkiewicz, Zbigniew


IMPACT FACTOR 2018: 1.221

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.329
Source Normalized Impact per Paper (SNIP) 2018: 0.479

ICV 2017: 152.94

Open Access
Online
ISSN
2391-5463
See all formats and pricing
More options …
Volume 6, Issue 5

Issues

Volume 10 (2015)

Activities of brain antioxidant enzymes, lipid and protein peroxidation

Anna Łukaszewicz-Hussain
Published Online: 2011-08-09 | DOI: https://doi.org/10.2478/s11536-011-0065-6

Abstract

Organophosphate pesticides are known to induce oxidative stress and cause oxidative tissue damage, as has been reported in studies concerning acute and chronic intoxication with these compounds.

Our objective was to investigate the activities of brain antioxidant enzymes and malonyldialdehyde, as well as the level of carbonyl groups, in rats sub-chronically intoxicated with chlorpyrifos at doses of 0.2, 2 and 5 mg per kg of body weight per day. It was found that chlorpyrifos induces change in brain antioxidant enzymes, such as superoxide dismutase, catalase and glutathione peroxidise, but to a different degree in comparison to proper control values; however, the elevated antioxidant enzymes activities failed to check lipid and protein peroxidation in the brains of rats. Thus, in sub-chronic intoxication with chlorpyrifos, as evidenced by increased level of malonyldialdehyde and carbonyl groups, oxidative stress is induced.

Measurements of protein carbonyl groups appeared to give more consistent responses in the rats’ brains when compared to the malonyldialdehyde level after sub-chronic chlorpyrifos treatment.

Keywords: Chlorpyrifos; Antioxidant enzymes; Malonyldialdehyde; Carbonyl groups

  • [1] Toxilogical profile for chlorpyrifos, 1997. U.S. Dep. Of Health services, Public Health Service, Agency for Toxic Substances and Disease Registry Google Scholar

  • [2] Baig S.A., Akhtera N.A., Ashfaq M., As M.R. Determination of the Organophosphorus Pesticide in Vegetables by High-Performance Liquid Chromatography. American-Eurasian J. Agric. & Environ. Sci., 2009, 6(5), 513–519 Google Scholar

  • [3] Savolainen K. Understanding the toxic action of organophosphates. In: Krieger, R.I. (Ed.), In: Handbook of pesticide toxicology. 2001, vol. 2. Academic Press, USA, pp. 1013–1043 http://dx.doi.org/10.1016/B978-012426260-7/50053-7CrossrefGoogle Scholar

  • [4] Sharma Y., Bashir S., Irshad M., Gupta S.D., Dogra T.D. Effects of acute dimethoate administration on antioxidant status of liver and brain of experimental rats. Toxicology 2005, 206, 49–54. http://dx.doi.org/10.1016/j.tox.2004.06.062CrossrefGoogle Scholar

  • [5] Łukaszewicz-Hussain A. Subchronic intoxication with chlorfenvinphos, an organophosphate insecticide, affects rat brain antioxidative enzymes and glutathione level. Food and Chem. Toxicol. 2008, 46, 82–86 http://dx.doi.org/10.1016/j.fct.2007.06.038Web of ScienceCrossrefGoogle Scholar

  • [6] Łukaszewicz-Hussain, A. Role of oxidative stress in organophosphate insecticide toxicity-Short review. Pestic. Biochem. Physiol. 2010, 98, 145–150 http://dx.doi.org/10.1016/j.pestbp.2010.07.006CrossrefGoogle Scholar

  • [7] Vidyasagar J., Karunakar N., Reddy M.S., Rajnarayana K., Surender T., Krishna, D.R. Oxidative stress and antioxidant status in acute organophosphorus insecticide poisoning. Indian J. Pharmacol. 2004, 36(2), 76–79 Google Scholar

  • [8] Kaur P., Radotra B., Minz R.W., Gill K.D. Impaired mitochondrial energy metabolism and neuronal apoptotic cell death after chronic dichlorvos (OP) exposure in rat brain. Neuro. Toxicology 2007, 28, 1208–1219 Web of ScienceGoogle Scholar

  • [9] Milatovic D., Gupta R.C., Aschner M. Anticholinesterase toxicity, oxidative stress. Sci. World J. 2006, 6, 295–310 Google Scholar

  • [10] Tomlin C.D.S. The Pesticide Manual, A World Compendium, 14th ed.; British Crop Protection Council: Alton, Hampshire, UK, 2006, 186–187 Google Scholar

  • [11] Sahin E., Gümüşlü S. Immobilization stress in rat tissues: alter actions in protein oxidation, lipid per oxidation and antioxidant defence system. Comp. Biochem. Physiol. C. Toxicol. Pharmacol., 2007, 144, 342–347 http://dx.doi.org/10.1016/j.cbpc.2006.10.009CrossrefGoogle Scholar

  • [12] Levine R. L., Garland D., Oliver C.N., Amici A., Climent I., Lenz A.G., Ahn B.W., Shaltiel S., Stadtman E.R. Determination of carbonyl content in oxidatively modified proteins. Meth. Enzymol. 1990, 186, 464–478. http://dx.doi.org/10.1016/0076-6879(90)86141-HCrossrefGoogle Scholar

  • [13] Aebi H. E. Catalase in vitro. Meth. Enzymol. 1984, 105, 121–126. http://dx.doi.org/10.1016/S0076-6879(84)05016-3CrossrefGoogle Scholar

  • [14] Lowry O. H., Rosebrough A.L., Randall R.J. Protein measurement with the phenol reagent. J. Biol. Chem. 1951, 193, 265–275. Google Scholar

  • [15] Curl C. L., Fenske R.A., Kissel J.C., Shirai J.H., Moate T.F., Griffith W., Coronado G., Thompson B. Evaluation of take-home organophosphorus pesticide exposure among agricultural workers and their children. Environ. Health Perspect. 2002, 110(12), 787–792. http://dx.doi.org/10.1289/ehp.021100787CrossrefGoogle Scholar

  • [16] Costa L. G. Current issues in organophosphate toxicology. Clin. Chim. Acta 2006, 336, 1–13 http://dx.doi.org/10.1016/j.cca.2005.10.008CrossrefGoogle Scholar

  • [17] Ranjbar A., Solhi H., Mashayekhi, F.J., Susanabdi A., Rezaie, A., Abdollahi M. Oxidative stress in acute human poisoning with organophosphorus insecticides; a case control study. Environ. Toxicol. and Pharmacol. 2005, 20, 88–91 http://dx.doi.org/10.1016/j.etap.2004.10.007CrossrefGoogle Scholar

  • [18] Goel A., Dani V., Hawan D.K. Protective effects of zinc on lipid peroxidation, antioxidant enzymes and hepatic histoarchitecture in chlorpyrifos-induced toxicity Chemico-Biological Interactions 2005, 156, 131–140 http://dx.doi.org/10.1016/j.cbi.2005.08.004CrossrefGoogle Scholar

  • [19] Mates J. M., Perez-Gomez C., Nunez D.C.I. Antioxidant enzymes and human diseases. Clin. Biochem. 1999, 32, 595–603 http://dx.doi.org/10.1016/S0009-9120(99)00075-2CrossrefGoogle Scholar

  • [20] White R. E. The involvement of free radicals in the mechanisms of monooxygenases. Pharmacol. Ther. 1991, 49, 21–42. http://dx.doi.org/10.1016/0163-7258(91)90020-MCrossrefGoogle Scholar

  • [21] Kovacic P. Mechanism of organophosphates (nerve gases and pesticides) and antidotes: electron transfer and oxidative stress. Curr. Med. Chem. 2003, 10, 2705–2709 http://dx.doi.org/10.2174/0929867033456314CrossrefGoogle Scholar

  • [22] Shacter E. Quantification and significance of protein oxidation in biological samples. Drug Met. Rev., 2000, 32, 307–326 http://dx.doi.org/10.1081/DMR-100102336CrossrefGoogle Scholar

  • [23] Ho Y. S., Gargano M., Cao J., Bronson R.T., Wittman T., Fazekas T. Reduced fertility in female mice lacking copper-zinc dismutase. J. Biol. Chem. 1998, 203, 7765–7769 http://dx.doi.org/10.1074/jbc.273.13.7765CrossrefGoogle Scholar

  • [24] Kono Y., Fridovich I. Superoxide radical inhibits catalase, J. Biol. Chem. 1982, 257, 5751–5754 Google Scholar

  • [25] Yu B. P. Cellular defenses against damage from reactive oxygen species, Physiol. Rev. 1994, 74, 139–162 Google Scholar

  • [26] Girotti A. W. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J. Lipid Res. 1998, 39, 1529–1542 Google Scholar

  • [27] Mueller S., Riedel H.D., Stremmel W. Direct evidence for catalase as the predominant H2O2-removing enzyme in human erythrocytes. Blood, 1997, 90, 4973–4978 Google Scholar

  • [28] Shacter E. Protein oxidative damage. Methods Enzym., 2000, 319, 428–436 http://dx.doi.org/10.1016/S0076-6879(00)19040-8CrossrefGoogle Scholar

  • [29] Possamai F. P., Fortunato J.J., Feier G., Agostinho F.R., Quevedo J., Filho, D.W., Dal-Pizzol F. Oxidative stress after acute and sub-chronic malathion intoxication in Wistar rats. Environm. Toxicol. Pharmacol. 2007, 23, 198–204 http://dx.doi.org/10.1016/j.etap.2006.09.003CrossrefWeb of ScienceGoogle Scholar

  • [30] Yarsan E., Tanyuksel M., Celik S., Aydin A. Effects of aldicarb and malathion on lipid peroxidation. Bull. Environ. Contam. Toxicol. 1999, 63, 575–581. http://dx.doi.org/10.1007/s001289901019CrossrefGoogle Scholar

  • [31] Haberland M. E., Fong D., Cheng L. Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits, Science, 1988, 241, 215–218 http://dx.doi.org/10.1126/science.2455346CrossrefGoogle Scholar

  • [32] Kim J. G., Sabbagh F., Santanam N., Wilcox J. N., Medford R.M., Parthasarathy S. Generation of a polyclonal antibody against lipid peroxidemodified proteins, Free Radical Biol. Med., 1997, 23, 251–259 http://dx.doi.org/10.1016/S0891-5849(96)00615-6CrossrefGoogle Scholar

  • [33] Videira R. A., Antunes-Madeira M.C., Lopes V.I., Madeira, V.M. Changes induced by malathion, methylparation and parathion on membrane lipid physicochemical properties correlate with their toxicity. Biochem. Biophys. Acta 2001, 1511, 360–368 http://dx.doi.org/10.1016/S0005-2736(01)00295-4CrossrefGoogle Scholar

  • [34] Evans P., Larys L., Halliwell B. Measurement of protein carbonyls in human brain tissues. Methods Enzym. 1999, 300, 145–156 http://dx.doi.org/10.1016/S0076-6879(99)00122-6CrossrefGoogle Scholar

  • [35] Dalle-Donne I., Rossi R., Giustarini D., Milzani A., Colombo R. Protein carbonyl groups level as biomarker of oxidative stress. Clin. Chim. Acta 2003, 329, 23–38 http://dx.doi.org/10.1016/S0009-8981(03)00003-2CrossrefGoogle Scholar

  • [36] Stadtman E. R. Determination of carbonyl content in oxidatively modified proteins, Methods Enzymol. 1990, 186, 464–478 http://dx.doi.org/10.1016/0076-6879(90)86141-HCrossrefGoogle Scholar

About the article

Published Online: 2011-08-09

Published in Print: 2011-10-01


Citation Information: Open Medicine, Volume 6, Issue 5, Pages 588–594, ISSN (Online) 2391-5463, DOI: https://doi.org/10.2478/s11536-011-0065-6.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Junju Su, Bing Li, Shen Cheng, Zhou Zhu, Xuezi Sang, Suxin Gui, Yi Xie, Qingqing Sun, Zhe Cheng, Jie Cheng, Rengping Hu, Weide Shen, Qingyou Xia, Ping Zhao, and Fashui Hong
Environmental Toxicology, 2014, Volume 29, Number 12, Page 1355
[2]
Lei Sheng, Xiaochun Wang, Xuezi Sang, Yuguan Ze, Xiaoyang Zhao, Dong Liu, Suxin Gui, Qingqing Sun, Jie Cheng, Zhe Cheng, Renping Hu, Ling Wang, and Fashui Hong
Journal of Biomedical Materials Research Part A, 2013, Page n/a

Comments (0)

Please log in or register to comment.
Log in