Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Medicine

formerly Central European Journal of Medicine

Editor-in-Chief: Darzynkiewicz, Zbigniew

IMPACT FACTOR 2018: 1.221

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.329
Source Normalized Impact per Paper (SNIP) 2018: 0.479

ICV 2017: 152.94

Open Access
See all formats and pricing
More options …
Volume 7, Issue 2


Volume 10 (2015)

Accuracy of non-invasive intracranial pressure measurement

Amir Seddighi
  • Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Functional Neurosurgery Research Center of Shohada Tajrish Hospital, Shahrara Park, 1445744454, Tehran, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alireza Zadeh / Afsoun Seddighi
  • Shahid Rajaee Hospital, Qazvin University of Medical Sciences, Functional Neurosurgery Research Center of Shohada Tajrish Hospital, 1445744454, Tehran, Qazvin, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alireza Zali
  • Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Neurofunctional Research Center of Shohada Tajrish Hospital, 1445744454, Teheran, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-02-03 | DOI: https://doi.org/10.2478/s11536-011-0129-7


Non-invasive measurement of intracranial pressure (ICP) reduces the complications and cost for both patient and health care systems. Improvement of non-invasive methods has led to development of systems for reproducing continuous, real-time non-invasive ICP signals. So far, non-invasive methods have been tailored for the patients with head trauma. We have used Schmidt’s auto-adaptive method to assess the accuracy of this method for patients after surgery for supratentorial brain tumors. Data from forty patients with the diagnosis of brain tumor operated from 2008 to 2010 were used to estimate the accuracy of Schmidt’s method in our patients. We obtained the model parameters from 30 recordings. We determined the ICP wave form for the remaining patients by both invasive and non-invasive techniques. In the test group, by invasive method, the mean ICP±2SD was 17.1 ± 6.6 mmHg and using non-invasive method, the mean ICP ± 2SD was 16.5 ± 5.4 mmHg. The calculated error was 4.6 mmHg using root mean square errors. The average Pearson correlation between the estimated and real waveforms was 0.92. We believe that application of this method is acceptable for post-operative assessment of ICP in brain tumor patients.

Keywords: Intracranial pressure; Non-invasive; Monitoring; Brain; Tumor

  • [1] Aaslid R, Lundar T, Lindegaard KF, Nornes H E. Stimation of cerebral perfusion pressure from arterial blood pressure and transcranial Doppler recordings. In: Miller JD, Teasdale GM, Rowan JO, Galbraith SL, Mendelow AD (eds) Intracranial pressure VI. Springer, Berlin, 226–229, 1993 Google Scholar

  • [2] Bundgaard H, Landsfeldt U, Cold GE. Subdural monitoring of ICP during craniotomy: Thresholds of cerebral swelling/ herniation ActaNeurochir Suppl (Wien), 71: 276–278, 1998 Google Scholar

  • [3] Chan KH, Miller JD, Dearden NM, Andrews PJ, Midgley S. The effect of changes in cerebral perfusion pressure upon middle cerebral artery blood flow velocity and jugular bulb venous oxygen saturation after severe brain injury. J Neurosurg, 77: 117–130, 1992 Google Scholar

  • [4] Constantini S, Cotev S, Rappaport ZH, Pomeranz S, Shalit MN. Intracranial pressure monitoring after elective intracranial surgery.A retrospective study of 514 consecutive patients. J Neurosurg. 69(4): 540–544, 1988 http://dx.doi.org/10.3171/jns.1988.69.4.0540CrossrefGoogle Scholar

  • [5] Czosnyka M, Matta BF, Smielewski P, Kirkpatrick P, Pickard JD Cerebral perfusion pressure in headinjured patients: a non-invasive assessment using transcranial Doppler ultrasonography. J Neurosurg. 88(5), 802–808, 1998 http://dx.doi.org/10.3171/jns.1998.88.5.0802CrossrefGoogle Scholar

  • [6] Diehl RR, Linden D, Lücke D, Berlit P. Phase relationship between cerebral blood flow velocity and blood pressure: a clinical test of autoregulation. Stroke, 20: 1–3, 1989 http://dx.doi.org/10.1161/01.STR.20.1.1CrossrefGoogle Scholar

  • [7] Panerai RB, White RP, Markus HS, Evans DH. Grading of cerebral dynamic autoregulation from spontaneous fluctuations in arterial blood pressure. Stroke. 29: 2341–2346, 1998 http://dx.doi.org/10.1161/01.STR.29.11.2341CrossrefGoogle Scholar

  • [8] Piechnik SK, Yang X, Czosnyka M, Smielewski P, Fletcher SH, Jones AL, Pickard JD. The continuous assessment of cerebrovascular reactivity: a validation of the method in healthy volunteers. Anesth Analg, 89: 944–949, 1999 PubMedGoogle Scholar

  • [9] Rosner MJ, Rosner SD, and Johnson AH. Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg: 83: 949–962, 1995 http://dx.doi.org/10.3171/jns.1995.83.6.0949CrossrefGoogle Scholar

  • [10] Schmidt B, Klingelhöfer J, Schwarze JJ, Sander D, Wittich I Non-invasive prediction of intracranial pressure curves using transcranial Doppler ultrasonography and blood pressure curves. Stroke, 28: 2465–2472, 1997 http://dx.doi.org/10.1161/01.STR.28.12.2465CrossrefGoogle Scholar

  • [11] Schmidt B, Czosnyka M. “Adaptive Non-invasive Assessment of Intracranial Pressure and Cerebral Autoregulation.” Stroke,J.American Heart Association. 34: 84–89, 2003 Google Scholar

  • [12] Schmidt B, Schwarze J. “A Method for a Simulation of Continuous Intracranial Pressure Curves.” Computers and Biomedical Research, 12(4): 231–243, 1998 http://dx.doi.org/10.1006/cbmr.1998.1479CrossrefGoogle Scholar

  • [13] Schmidt B, Czosnyka M. “Evaluation of a method for non-invasive intracranial pressure assessment during infusion studies in patients with hydrocephalus.” J Neurosurg; 92: 793–800, 2000 http://dx.doi.org/10.3171/jns.2000.92.5.0793CrossrefGoogle Scholar

  • [14] Smith M., Monitoring Intracranial Pressure in Traumatic Brain Injury. Anesthesia and analgesia. 106(1): 240–248, 2008 http://dx.doi.org/10.1213/01.ane.0000297296.52006.8eCrossrefGoogle Scholar

  • [15] Sharma D, Parmod K, Hari H, Rajendra S, Pimwan V, Monica S. Cerebral Autoregulation and CO2 Reactivity Before and After Elective Supratentorial Tumor Resection. Journal of Neurosurgical Anesthesiology, 22(2): 132–137, 2010 http://dx.doi.org/10.1097/ANA.0b013e3181c9fbf1Google Scholar

  • [16] Steiner LA, Czosnyka M, Piechnik SK. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med, 30: 733–738, 2002. http://dx.doi.org/10.1097/00003246-200204000-00002CrossrefGoogle Scholar

  • [17] Steiner L.A. and Andrews P.J. D. Monitoring the injured brain: ICP and CBF, British Journal of Anaesthesia 97(I), 26–38, 2006 http://dx.doi.org/10.1093/bja/ael110CrossrefGoogle Scholar

About the article

Published Online: 2012-02-03

Published in Print: 2012-04-01

Citation Information: Open Medicine, Volume 7, Issue 2, Pages 169–175, ISSN (Online) 2391-5463, DOI: https://doi.org/10.2478/s11536-011-0129-7.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in