Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Medicine

formerly Central European Journal of Medicine

Editor-in-Chief: Darzynkiewicz, Zbigniew

IMPACT FACTOR 2018: 1.221

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.329
Source Normalized Impact per Paper (SNIP) 2018: 0.479

ICV 2017: 152.94

Open Access
See all formats and pricing
More options …
Volume 7, Issue 2


Volume 10 (2015)

Comparative study of the antioxidant activity of some thiol-containing substances

Lubomir Petrov / Mila Atanassova / Albena Alexandrova
Published Online: 2012-02-03 | DOI: https://doi.org/10.2478/s11536-011-0132-z
  • [1] Przyklenk K., Kloner R., Angiotensin converting enzyme inhibitors improve contractile function of stunned myocardium by different mechanisms of action. Am. Heart J., 1991, 121(5), 1319–1330 http://dx.doi.org/10.1016/0002-8703(91)90134-4CrossrefGoogle Scholar

  • [2] Fischer S., Maclean A.A., Liu M., Kalirai B., Keshavjee S., Inhibition of angiotensin-converting enzyme by captopril: a novel approach to reduce ischemia-reperfusion injury after lung transplantation, J. Thorac. Cardiovasc. Surg., 2000, 120(3), 573–580 http://dx.doi.org/10.1067/mtc.2000.107828CrossrefGoogle Scholar

  • [3] Hanif K., Snehlata P., Pavar M.C., Arif E., Biswas P., Fahim M., Pasha M.A., Pasha S., Effect of 3-thienylalanine-ornithine-proline, new sulfur-containing angiotensin-converting enzyme inhibitor on blood pressure and oxidative stress in spontaneously hypertensive rats. J. Cardiovasc. Pharmacol., 2009, 53(2), 145–150 http://dx.doi.org/10.1097/FJC.0b013e318197c616CrossrefGoogle Scholar

  • [4] Heel R.C., Brogden R.N., Speight T.M., Avery G.S., Captopril: a preliminary review of its pharmacological properties and therapeutic efficacy. Drugs, 1980, 20(6), 409–452 http://dx.doi.org/10.2165/00003495-198020060-00001CrossrefGoogle Scholar

  • [5] Chopra M., Scott N., McMurray J., McLay J., Bridges A., Smith W.E., Belch J.J.F., Captopril: a free radical scavenger. Br. J. Clin. Pharmac., 1989, 27, 396–399 Google Scholar

  • [6] Gupta M.K., Uhm S.J., Lee H.T., Effect of vitrification and beta-mercaptoethanol on reactive oxygen species activity and in vitro development of oocytes vitrified before or after in vitro fertilization. Fertil Steril., 2010, 93(8), 2602–2607 http://dx.doi.org/10.1016/j.fertnstert.2010.01.043CrossrefGoogle Scholar

  • [7] Sun L., Xu S., Zhou M., Wang Ch., Wu Y., Chan P., Effects of cysteamine on MPTP-induced dopaminergic neurodegeneration in mice. Brain Research, 2010, 1335, 74–82 http://dx.doi.org/10.1016/j.brainres.2010.03.079CrossrefWeb of ScienceGoogle Scholar

  • [8] Tartier L., McCarey Y.L., Biaglow J.E, Kochevar I.E., Held K.D., Apoptosis induced by dithiothreitol in HL-60 cells shows early activation of caspase 3 and is independent of mitochondria. Cell Death and differentiation, 2000, 7(10), 1002–1010 http://dx.doi.org/10.1038/sj.cdd.4400726CrossrefGoogle Scholar

  • [9] Kachur A.V., Held K.D., Koch C.J., Biaglow J.E., Mechanism of production of hydroxyl radicals in the copper-catalyzed oxidation of dithiothreitol. Radiat. Res., 1997 147, 409–415 http://dx.doi.org/10.2307/3579496CrossrefGoogle Scholar

  • [10] Biaglow J.E., Manevich Y., Uckun F., Held K.D., Quantitation of hydroxyl radicals produced by radiation and copper-linked oxidation of ascorbate by 2-deoxy-D-ribose method. Free Radic. Biol. Med., 1997, 22, 1129–1138 http://dx.doi.org/10.1016/S0891-5849(96)00527-8CrossrefGoogle Scholar

  • [11] Gutteridge J.M., Ferrous-salt-promoted damage to deoxyribose and benzoate. The increased effectiveness of hydroxyl-radical scavengers in the presence of EDTA. Biochem. J., 1987, 243(3), 709–714 Google Scholar

  • [12] Cohen G., In: Greewald R.A. (Ed.), Handbook of Methods for Oxygen Radical Research, CRC Press, Boca Raton, Florida, 1985, pp. 55–64. Google Scholar

  • [13] Beauchamp C., Fridovich I., Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem., 1971, 44(1), 276–287 http://dx.doi.org/10.1016/0003-2697(71)90370-8CrossrefGoogle Scholar

  • [14] Cody R.J., Schaer G.L., Covit A.B., Pondolfino K., Williams G., Captopril kinetics in chronic congestive heart failure. Clin. Pharmacol. Ther., 1982, 32(6), 721–726 http://dx.doi.org/10.1038/clpt.1982.228CrossrefGoogle Scholar

  • [15] Misra H.P., Fridovich I., Superoxide dismutase: a photochemical augmentation assay. Arch. Biochem. Biophys., 1977, 181(1), 308–312 http://dx.doi.org/10.1016/0003-9861(77)90509-4CrossrefGoogle Scholar

  • [16] Winterbourn C.C., Metodiewa D., Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic. Biol. Med., 1999, 27(3–4), 322–328 http://dx.doi.org/10.1016/S0891-5849(99)00051-9CrossrefGoogle Scholar

  • [17] Kukreja R.C., Kontos H.A., Hess M.L., Captopril and enalaprilat do not scavenge the superoxide anion. Am. J. Cardiol., 1990, 65(19), 24I–27I http://dx.doi.org/10.1016/0002-9149(90)90121-GCrossrefGoogle Scholar

  • [18] Egan T.M., Minta J.O., Scrimgeour K.G., Cooper J.D., Captopril—a potential free radical scavenger: inhibition of PMN NADPH oxidase. Clin. Invest. Med., 1988, 11(5), 351–356 Google Scholar

  • [19] Pisoni R.L., Park G.Y., Velilla V.Q., Thoene J.G., Detection and characterization of a transport system mediating cysteamine entry into human fifibroblast lysosomes. Specifificity for aminoethylthiol and aminoethylsulfifide derivatives. J. Biol. Chem., 1995, 270(3), 1179–1184 http://dx.doi.org/10.1074/jbc.270.3.1179CrossrefGoogle Scholar

  • [20] Coloso R. M., Hirschberger L. L., Dominy J. E., Lee J. I., Stipanuk, M. H., Cysteamine dioxygenase: evidence for the physiological conversion of cysteamine to hypotaurine in rat and mouse tissues. Adv. Exp. Med. Biol., 2006, 583, 25–36 http://dx.doi.org/10.1007/978-0-387-33504-9_3CrossrefGoogle Scholar

  • [21] Dominy J.E., Simmons C.R., Hirschberger L.L., Hwang J., Coloso R.M., Stipanuk M.H., Discovery and characterization of a second mammalian thiol dioxygenase: Cysteamine dioxygenase. J. Biol. Chem., 2007, 282(35), 25189–25198 http://dx.doi.org/10.1074/jbc.M703089200CrossrefWeb of ScienceGoogle Scholar

  • [22] Liu H.-Z., Zhong J.-P., Effects of Cysteamine on Antioxidant Ability of Mice. Journal of Henan University of Science & Technology (Natural Science), 2009, en.cnki.com.cn/Article_en/CJFDTOTAL-LYGX200901018.htm Google Scholar

  • [23] Abeydeera L. R., Wang W. H., Cantley T. C., Prather R. S., Day B. N., Presence of beta-mercaptoethanol can increase the glutathione content of pig oocytes matured in vitro and the rate of blastocyst development after in vitro fertilization. Theriogenology, 1998, 50, 747–756 http://dx.doi.org/10.1016/S0093-691X(98)00180-0CrossrefGoogle Scholar

About the article

Published Online: 2012-02-03

Published in Print: 2012-04-01

Citation Information: Open Medicine, Volume 7, Issue 2, Pages 269–273, ISSN (Online) 2391-5463, DOI: https://doi.org/10.2478/s11536-011-0132-z.

Export Citation

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in