Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Medicine

formerly Central European Journal of Medicine

Editor-in-Chief: Darzynkiewicz, Zbigniew

IMPACT FACTOR 2018: 1.221

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.329
Source Normalized Impact per Paper (SNIP) 2018: 0.479

ICV 2018: 156.09

Open Access
See all formats and pricing
More options …
Volume 8, Issue 3


Volume 10 (2015)

Predictors of diabetic nephropathy

Mahmoud Gaballa / Youssef Farag
Published Online: 2013-04-17 | DOI: https://doi.org/10.2478/s11536-012-0055-3


Diabetic nephropathy (DN) is a leading cause of morbidity and mortality in diabetic patients representing a huge health and economic burden. Alarming recent data described diabetes as an unprecedented worldwide epidemic, with a prevalence of ∼6.4% of the world population in 2010, while the prevalence of CKD among diabetics was approximately 40%. With a clinical field hungry for novel markers predicting DN, several clinical and laboratory markers were identified lately with the promise of reliable DN prediction. Among those are age, gender, hypertension, smoking, sex hormones and anemia. In addition, eccentric left ventricular geometric patterns, detected by echocardiography, and renal hypertrophy, revealed by ultrasonography, are promising new markers predicting DN development. Serum and urinary markers are still invaluable elements, including serum uric acid, microalbuminuria, macroalbuminuria, urinary liver-type fatty acid-binding protein (u-LFABP), and urinary nephrin. Moreover, studies have illustrated a tight relationship between obstructive sleep apnea and the development of DN. The purpose of this review is to present the latest advances in identifying promising predictors to DN, which will help guide the future research questions in this field. Aiming at limiting this paramount threat, further efforts are necessary to identify and control independent modifiable risk factors, while developing an integrative algorithm for utilization in DN future screening programs.

Keywords: Diabetes; Chronic kidney disease; Diabetic nephropathy; Risk factors; Predictors; Markers; Microalbuminuria

  • [1] Foley, R.N. and A.J. Collins, The growing economic burden of diabetic kidney disease. Curr Diab Rep, 2009. 9(6): p. 460–465 http://dx.doi.org/10.1007/s11892-009-0075-9CrossrefGoogle Scholar

  • [2] Farag, Y.M. and M.R. Gaballa, Diabesity: an overview of a rising epidemic. Nephrol Dial Transplant, 2011. 26(1): p. 28–35 http://dx.doi.org/10.1093/ndt/gfq576CrossrefGoogle Scholar

  • [3] Shaw, J.E., R.A. Sicree, and P.Z. Zimmet, Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract, 2010. 87(1): p. 4–14 http://dx.doi.org/10.1016/j.diabres.2009.10.007Google Scholar

  • [4] Plantinga, L.C., et al., Prevalence of chronic kidney disease in US adults with undiagnosed diabetes or prediabetes. Clin J Am Soc Nephrol, 2010. 5(4): p. 673–682 http://dx.doi.org/10.2215/CJN.07891109CrossrefGoogle Scholar

  • [5] Abougalambou, S.S.I., et al., Prevalence of Vascular Complications among Type 2 Diabetes Mellitus Outpatients at Teaching Hospital in Malaysia. J Diabet Metabol, 2011. 2:115 http://dx.doi.org/10.4172/2155-6156.1000115CrossrefGoogle Scholar

  • [6] Singh, D.K., P. Winocour, and K. Farrington, Oxidative stress in early diabetic nephropathy: fueling the fire. Nat Rev Endocrinol, 2010 Google Scholar

  • [7] Fioretto, P., et al., An overview of renal pathology in insulin-dependent diabetes mellitus in relationship to altered glomerular hemodynamics. Am J Kidney Dis, 1992. 20(6): p. 549–558 CrossrefGoogle Scholar

  • [8] Adler, S., Diabetic nephropathy: Linking histology, cell biology, and genetics. Kidney Int, 2004. 66(5): p. 2095–2106 http://dx.doi.org/10.1111/j.1523-1755.2004.00988.xCrossrefGoogle Scholar

  • [9] Alexander, M.P., et al., Kidney pathological changes in metabolic syndrome: a cross-sectional study. Am J Kidney Dis, 2009. 53(5): p. 751–759. http://dx.doi.org/10.1053/j.ajkd.2009.01.255CrossrefGoogle Scholar

  • [10] Farag, Y.M., Metabolic syndrome and the nonneoplastic kidney. Adv Anat Pathol, 2011. 18(2): p. 173; author reply 174 http://dx.doi.org/10.1097/PAP.0b013e3182026d60CrossrefGoogle Scholar

  • [11] Nosadini, R., et al., Course of renal function in type 2 diabetic patients with abnormalities of albumin excretion rate. Diabetes, 2000. 49(3): p. 476–484 http://dx.doi.org/10.2337/diabetes.49.3.476Google Scholar

  • [12] Keck, M., et al., Hormonal status affects the progression of STZ-induced diabetes and diabetic renal damage in the VCD mouse model of menopause. Am J Physiol Renal Physiol, 2007. 293(1): p. F193–199 http://dx.doi.org/10.1152/ajprenal.00022.2007CrossrefGoogle Scholar

  • [13] Mankhey, R.W., F. Bhatti, and C. Maric, 17beta-Estradiol replacement improves renal function and pathology associated with diabetic nephropathy. Am J Physiol Renal Physiol, 2005. 288(2): p. F399–405 http://dx.doi.org/10.1152/ajprenal.00195.2004CrossrefGoogle Scholar

  • [14] Reckelhoff, J.F., et al., Testosterone supplementation in aging men and women: possible impact on cardiovascular-renal disease. Am J Physiol Renal Physiol, 2005. 289(5): p. F941–948 http://dx.doi.org/10.1152/ajprenal.00034.2005CrossrefGoogle Scholar

  • [15] Mollsten, A., et al., Cumulative risk, age at onset, and sex-specific differences for developing endstage renal disease in young patients with type 1 diabetes: a nationwide population-based cohort study. Diabetes, 2010. 59(7): p. 1803–1808 http://dx.doi.org/10.2337/db09-1744CrossrefGoogle Scholar

  • [16] Morimoto, A., et al., Is pubertal onset a risk factor for blindness and renal replacement therapy in childhood-onset type 1 diabetes in Japan? Diabetes Care, 2007. 30(9): p. 2338–2340 http://dx.doi.org/10.2337/dc07-0043CrossrefGoogle Scholar

  • [17] Harvey, J.N., The influence of sex and puberty on the progression of diabetic nephropathy and retinopathy. Diabetologia, 2011. 54(8): p. 1943–1945 http://dx.doi.org/10.1007/s00125-011-2185-6CrossrefGoogle Scholar

  • [18] Finne, P., et al., Incidence of end-stage renal disease in patients with type 1 diabetes. JAMA, 2005. 294(14): p. 1782–1787 http://dx.doi.org/10.1001/jama.294.14.1782CrossrefGoogle Scholar

  • [19] Raile, K., et al., Diabetic nephropathy in 27,805 children, adolescents, and adults with type 1 diabetes: effect of diabetes duration, A1C, hypertension, dyslipidemia, diabetes onset, and sex. Diabetes Care, 2007. 30(10): p. 2523–2528 http://dx.doi.org/10.2337/dc07-0282CrossrefGoogle Scholar

  • [20] Svensson, M., et al., Age at onset of childhoodonset type 1 diabetes and the development of end-stage renal disease: a nationwide population-based study. Diabetes Care, 2006. 29(3): p. 538–542 http://dx.doi.org/10.2337/diacare.29.03.06.dc05-1531CrossrefGoogle Scholar

  • [21] Dahlquist, G. and S. Rudberg, The prevalence of microalbuminuria in diabetic children and adolescents and its relation to puberty. Acta Paediatr Scand, 1987. 76(5): p. 795–800 http://dx.doi.org/10.1111/j.1651-2227.1987.tb10567.xCrossrefGoogle Scholar

  • [22] Olsen, B.S., et al., The significance of the prepubertal diabetes duration for the development of retinopathy and nephropathy in patients with type 1 diabetes. J Diabetes Complications, 2004. 18(3): p. 160–164 http://dx.doi.org/10.1016/S1056-8727(03)00073-4CrossrefGoogle Scholar

  • [23] Yacoub, R., et al., Association between smoking and chronic kidney disease: a case control study. BMC Public Health, 2010. 10: p. 731. http://dx.doi.org/10.1186/1471-2458-10-731CrossrefGoogle Scholar

  • [24] Sawicki, P.T., et al., Smoking is associated with progression of diabetic nephropathy. Diabetes Care, 1994. 17(2): p. 126–131 http://dx.doi.org/10.2337/diacare.17.2.126CrossrefGoogle Scholar

  • [25] Rossing, P., P. Hougaard, and H.H. Parving, Risk factors for development of incipient and overt diabetic nephropathy in type 1 diabetic patients: a 10-year prospective observational study. Diabetes Care, 2002. 25(5): p. 859–864 http://dx.doi.org/10.2337/diacare.25.5.859CrossrefGoogle Scholar

  • [26] Stegmayr, B.G., A study of patients with diabetes mellitus (type 1) and end-stage renal failure: tobacco usage may increase risk of nephropathy and death. J Intern Med, 1990. 228(2): p. 121–124 http://dx.doi.org/10.1111/j.1365-2796.1990.tb00204.xCrossrefGoogle Scholar

  • [27] Chuahirun, T. and D.E. Wesson, Cigarette smoking predicts faster progression of type 2 established diabetic nephropathy despite ACE inhibition. Am J Kidney Dis, 2002. 39(2): p. 376–382 http://dx.doi.org/10.1053/ajkd.2002.30559CrossrefGoogle Scholar

  • [28] Orth, S.R., Smoking—a renal risk factor. Nephron, 2000. 86(1): p. 12–26 http://dx.doi.org/10.1159/000045708CrossrefGoogle Scholar

  • [29] Jaimes, E.A., R.X. Tian, and L. Raij, Nicotine: the link between cigarette smoking and the progression of renal injury? Am J Physiol Heart Circ Physiol, 2007. 292(1): p. H76–82 http://dx.doi.org/10.1152/ajpheart.00693.2006CrossrefGoogle Scholar

  • [30] Marangon, K., et al., Diet, antioxidant status, and smoking habits in French men. Am J Clin Nutr, 1998. 67(2): p. 231–239 Google Scholar

  • [31] Cross, C.E., A. van der Vliet, and J.P. Eiserich, Cigarette smokers and oxidant stress: a continuing mystery. Am J Clin Nutr, 1998. 67(2): p. 184–185 Google Scholar

  • [32] Hu, Y., et al., Relations of glycemic index and glycemic load with plasma oxidative stress markers. Am J Clin Nutr, 2006. 84(1): p. 70–76; quiz 266–267 Google Scholar

  • [33] Chabrashvili, T., et al., Expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney. Hypertension, 2002. 39(2): p. 269–274 http://dx.doi.org/10.1161/hy0202.103264CrossrefGoogle Scholar

  • [34] Gorin, Y., et al., Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney. J Biol Chem, 2005. 280(47): p. 39616–39626 http://dx.doi.org/10.1074/jbc.M502412200CrossrefGoogle Scholar

  • [35] Hua, P., et al., Nicotine worsens the severity of nephropathy in diabetic mice: implications for the progression of kidney disease in smokers. Am J Physiol Renal Physiol, 2010. 299(4): p. F732–739 http://dx.doi.org/10.1152/ajprenal.00293.2010CrossrefGoogle Scholar

  • [36] Sharma, K., P. McCue, and S.R. Dunn, Diabetic kidney disease in the db/db mouse. Am J Physiol Renal Physiol, 2003. 284(6): p. F1138–1144 Google Scholar

  • [37] Waugh, N.R., et al., Mortality in a cohort of diabetic patients. Causes and relative risks. Diabetologia, 1989. 32(2): p. 103–104 http://dx.doi.org/10.1007/BF00505181CrossrefGoogle Scholar

  • [38] Sturrock, N.D., et al., Non-dipping circadian blood pressure and renal impairment are associated with increased mortality in diabetes mellitus. Diabet Med, 2000. 17(5): p. 360–364 http://dx.doi.org/10.1046/j.1464-5491.2000.00284.xCrossrefGoogle Scholar

  • [39] Epstein, M. and J.R. Sowers, Diabetes mellitus and hypertension. Hypertension, 1992. 19(5): p. 403–418 http://dx.doi.org/10.1161/01.HYP.19.5.403CrossrefGoogle Scholar

  • [40] Farmer, C.K., et al., Progression of diabetic nephropathy—is diurnal blood pressure rhythm as important as absolute blood pressure level? Nephrol Dial Transplant, 1998. 13(3): p. 635–639 http://dx.doi.org/10.1093/ndt/13.3.635CrossrefGoogle Scholar

  • [41] Verdecchia, P., et al., Blunted nocturnal fall in blood pressure in hypertensive women with future cardiovascular morbid events. Circulation, 1993. 88(3): p. 986–992 http://dx.doi.org/10.1161/01.CIR.88.3.986CrossrefGoogle Scholar

  • [42] Borch-Johnsen, K., P.K. Andersen, and T. Deckert, The effect of proteinuria on relative mortality in type 1 (insulin-dependent) diabetes mellitus. Diabetologia, 1985. 28(8): p. 590–596 http://dx.doi.org/10.1007/BF00281993CrossrefGoogle Scholar

  • [43] Hansen, H.P., et al., Circadian rhythm of arterial blood pressure and albuminuria in diabetic nephropathy. Kidney Int, 1996. 50(2): p. 579–585 http://dx.doi.org/10.1038/ki.1996.352CrossrefGoogle Scholar

  • [44] Lurbe, E., et al., Increase in nocturnal blood pressure and progression to microalbuminuria in type 1 diabetes. N Engl J Med, 2002. 347(11): p. 797–805 http://dx.doi.org/10.1056/NEJMoa013410CrossrefGoogle Scholar

  • [45] Lurbe, A., et al., Altered blood pressure during sleep in normotensive subjects with type I diabetes. Hypertension, 1993. 21(2): p. 227–235 http://dx.doi.org/10.1161/01.HYP.21.2.227CrossrefGoogle Scholar

  • [46] Moore, W.V., et al., Ambulatory blood pressure in type I diabetes mellitus. Comparison to presence of incipient nephropathy in adolescents and young adults. Diabetes, 1992. 41(9): p. 1035–1041 http://dx.doi.org/10.2337/diab.41.9.1035CrossrefGoogle Scholar

  • [47] Lafferty, A.R., G.A. Werther, and C.F. Clarke, Ambulatory blood pressure, microalbuminuria, and autonomic neuropathy in adolescents with type 1 diabetes. Diabetes Care, 2000. 23(4): p. 533–538 http://dx.doi.org/10.2337/diacare.23.4.533CrossrefGoogle Scholar

  • [48] Felicio, J.S., et al., Nocturnal blood pressure fall as predictor of diabetic nephropathy in hypertensive patients with type 2 diabetes. Cardiovasc Diabetol, 2010. 9: p. 36 http://dx.doi.org/10.1186/1475-2840-9-36CrossrefGoogle Scholar

  • [49] Magri, C.J., et al., Factors associated with diabetic nephropathy in subjects with proliferative retinopathy. Int Urol Nephrol, 2011 Google Scholar

  • [50] Ip, M.S., et al., Obstructive sleep apnea is independently associated with insulin resistance. Am J Respir Crit Care Med, 2002. 165(5): p. 670–676 http://dx.doi.org/10.1164/ajrccm.165.5.2103001CrossrefGoogle Scholar

  • [51] Ozol, D., et al., Influence of snoring on microalbuminuria in diabetic patients. Sleep Breath, 2010 Google Scholar

  • [52] Netzer, N.C., et al., Using the Berlin Questionnaire to identify patients at risk for the sleep apnea syndrome. Ann Intern Med, 1999. 131(7): p. 485–491 http://dx.doi.org/10.7326/0003-4819-131-7-199910050-00002CrossrefGoogle Scholar

  • [53] Hovind, P., et al., Serum uric acid as a predictor for development of diabetic nephropathy in type 1 diabetes: an inception cohort study. Diabetes, 2009. 58(7): p. 1668–1671 http://dx.doi.org/10.2337/db09-0014CrossrefGoogle Scholar

  • [54] Kosugi, T., et al., Effect of lowering uric acid on renal disease in the type 2 diabetic db/db mice. Am J Physiol Renal Physiol, 2009. 297(2): p. F481–488 http://dx.doi.org/10.1152/ajprenal.00092.2009CrossrefGoogle Scholar

  • [55] Kanakamani, J., et al., Prevalence of microalbuminuria among patients with type 2 diabetes mellitus—a hospital-based study from north India. Diabetes Technol Ther, 2010. 12(2): p. 161–166 http://dx.doi.org/10.1089/dia.2009.0133CrossrefGoogle Scholar

  • [56] Hoefield, R.A., et al., The use of eGFR and ACR to predict decline in renal function in people with diabetes. Nephrol Dial Transplant, 2010 Google Scholar

  • [57] Rossing, P., et al., Monitoring kidney function in type 2 diabetic patients with incipient and overt diabetic nephropathy. Diabetes Care, 2006. 29(5): p. 1024–1030 http://dx.doi.org/10.2337/dc05-2201CrossrefGoogle Scholar

  • [58] Phillips, A.O. and R. Steadman, Diabetic nephropathy: the central role of renal proximal tubular cells in tubulointerstitial injury. Histol Histopathol, 2002. 17(1): p. 247–252 Google Scholar

  • [59] Kanauchi, M., H. Nishioka, and T. Hashimoto, Oxidative DNA damage and tubulointerstitial injury in diabetic nephropathy. Nephron, 2002. 91(2): p. 327–329 http://dx.doi.org/10.1159/000058412CrossrefGoogle Scholar

  • [60] Nielsen, S.E., et al., Urinary liver-type fatty acidbinding protein predicts progression to nephropathy in type 1 diabetic patients. Diabetes Care, 2010. 33(6): p. 1320–1324 http://dx.doi.org/10.2337/dc09-2242CrossrefGoogle Scholar

  • [61] Kamijo-Ikemori, A., et al., Clinical Significance of Urinary Liver-Type Fatty Acid Binding Protein in Diabetic Nephropathy of Type 2 Diabetic Patients. Diabetes Care, 2011 Google Scholar

  • [62] Nielsen, S.E., et al., Tubular markers do not predict the decline in glomerular filtration rate in type 1 diabetic patients with overt nephropathy. Kidney Int, 2011. 79(10): p. 1113–1118 http://dx.doi.org/10.1038/ki.2010.554CrossrefGoogle Scholar

  • [63] Aaltonen, P., et al., Changes in the expression of nephrin gene and protein in experimental diabetic nephropathy. Lab Invest, 2001. 81(9): p. 1185–1190 http://dx.doi.org/10.1038/labinvest.3780332CrossrefGoogle Scholar

  • [64] Luimula, P., et al., Nephrin in experimental glomerular disease. Kidney Int, 2000. 58(4): p. 1461–1468 http://dx.doi.org/10.1046/j.1523-1755.2000.00308.xCrossrefGoogle Scholar

  • [65] Qipo, A., H.W. Cohen, and B. Jim, 256 Urinary Nephrin as an Early Biomarker of Diabetic Nephropathy. American journal of kidney diseases: the official journal of the National Kidney Foundation, 2011. 57(4): p. B80 http://dx.doi.org/10.1053/j.ajkd.2011.02.259CrossrefGoogle Scholar

  • [66] Rutter, M.K., et al., Increased left ventricular mass index and nocturnal systolic blood pressure in patients with Type 2 diabetes mellitus and microalbuminuria. Diabet Med, 2000. 17(4): p. 321–325 http://dx.doi.org/10.1046/j.1464-5491.2000.00262.xCrossrefGoogle Scholar

  • [67] Suzuki, K., et al., Left ventricular mass index increases in proportion to the progression of diabetic nephropathy in Type 2 diabetic patients. Diabetes Res Clin Pract, 2001. 54(3): p. 173–180 http://dx.doi.org/10.1016/S0168-8227(01)00318-7CrossrefGoogle Scholar

  • [68] Moon, S.J., et al., The effect of anemia and left ventricular geometric patterns on renal disease progression in type 2 diabetic nephropathy. J Nephrol, 2011. 24(1): p. 50–59 http://dx.doi.org/10.5301/JN.2010.353CrossrefGoogle Scholar

  • [69] Rigalleau, V., et al., Large kidneys predict poor renal outcome in subjects with diabetes and chronic kidney disease. BMC Nephrol, 2010. 11: p. 3 http://dx.doi.org/10.1186/1471-2369-11-3CrossrefGoogle Scholar

  • [70] Zerbini, G., et al., Persistent renal hypertrophy and faster decline of glomerular filtration rate precede the development of microalbuminuria in type 1 diabetes. Diabetes, 2006. 55(9): p. 2620–2625 http://dx.doi.org/10.2337/db06-0592CrossrefGoogle Scholar

  • [71] Ablett, M.J., et al., How reliable are ultrasound measurements of renal length in adults? Br J Radiol, 1995. 68(814): p. 1087–1089 http://dx.doi.org/10.1259/0007-1285-68-814-1087Google Scholar

  • [72] Elliott J, Mishler D, Agarwal R. Hyporesponsiveness to erythropoietin: causes and management. Adv Chronic Kidney Dis. 2009 Mar;16(2):94–100 http://dx.doi.org/10.1053/j.ackd.2008.12.004Google Scholar

  • [73] Keithi-Reddy SR, Addabbo F, Patel TV, Mittal BV, Goligorsky MS, Singh AK. Association of anemia and erythropoiesis stimulating agents with inflammatory biomarkers in chronic kidney disease. Kidney Int. 2008 Google Scholar

  • [74] Inrig JK, Bryskin SK, Patel UD, Arcasoy M, Szczech LA. Association between high-dose erythropoiesis-stimulating agents, inflammatory biomarkers, and soluble erythropoietin receptors. BMC Nephrol. 2011 Dec 12;12:67 http://dx.doi.org/10.1186/1471-2369-12-67CrossrefGoogle Scholar

About the article

Published Online: 2013-04-17

Published in Print: 2013-06-01

Citation Information: Open Medicine, Volume 8, Issue 3, Pages 287–296, ISSN (Online) 2391-5463, DOI: https://doi.org/10.2478/s11536-012-0055-3.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in