Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Medicine

formerly Central European Journal of Medicine

Editor-in-Chief: Darzynkiewicz, Zbigniew

1 Issue per year


IMPACT FACTOR 2016 (Open Medicine): 0.294
IMPACT FACTOR 2016 (Central European Journal of Medicine): 0.116

CiteScore 2016: 0.28

SCImago Journal Rank (SJR) 2015: 0.140
Source Normalized Impact per Paper (SNIP) 2015: 0.154

Open Access
Online
ISSN
2391-5463
See all formats and pricing
More options …
Volume 8, Issue 4 (Aug 2013)

Issues

Chemical robotics — chemotactic drug carriers

István Lagzi
Published Online: 2013-06-12 | DOI: https://doi.org/10.2478/s11536-012-0130-9

Abstract

In this review we show and describe a concept of designing autonomously moving artificial cells (chemical robots) carrying drugs and having tactic behavior based on artificial chemotaxis. Such systems could help to provide new and more efficient drug delivery applications. Chemical robot can be constructed based on the self-organization — natural “bottom-up” way — of fatty acid or lipid molecules into ordered nano- or micrometer size objects that have the ability to move and respond to environmental stimuli. The idea of using tactic carriers in drug delivery applications can be justified by the fact that cancer sites in the living body have different physiological characters (lower pH and higher resting temperature) compared to normal cells. The proposed “bottom-up” design method for self-propelled objects at small scales for targeted drug delivery applications could realize the original designation of nanoscience proposed 50 years ago by Richard Feynman.

Keywords: Chemotaxis; Targeted drug delivery; Nanorobots; Nanorobotics

  • [1] Freitas Jr. R.A. What is nanomedicine?, Nanomed-Nanaotechnol., 2005, 1, 2–5 http://dx.doi.org/10.1016/j.nano.2004.11.003CrossrefGoogle Scholar

  • [2] Freitas Jr. R.A. Nanotechnology, nanomedicine and nanosurgery, Int. J. Surg., 2005, 3, 243–246 http://dx.doi.org/10.1016/j.ijsu.2005.10.007CrossrefGoogle Scholar

  • [3] Freitas R.A. Meeting the challenge of building diamondoid medical nanorobots, Int. J. Robot. Res. 2009, 28, 548–557 http://dx.doi.org/10.1177/0278364908100501CrossrefGoogle Scholar

  • [4] Cavalcanti A., Shirinzadeh B., Kretly L.C., Medical nanorobotics for diabetes control, Nanomed-Nanaotechnol., 2008, 4, 127–138 http://dx.doi.org/10.1016/j.nano.2008.03.001CrossrefGoogle Scholar

  • [5] Grancic P., Stepanek F., Active targeting in a random porous medium by chemical swarm robots with secondary chemical signaling, Phys. Rev. E, 2011, 84, 021925 http://dx.doi.org/10.1103/PhysRevE.84.021925CrossrefGoogle Scholar

  • [6] Kagan D., Laocharoensuk R., Zimmerman M., Clawson C., Balasubramanian S., Kang D., et al., Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles, Small, 2010, 6, 2741–2747 http://dx.doi.org/10.1002/smll.201001257CrossrefGoogle Scholar

  • [7] Patel G.M., Patel G.C., Patel R.B., Patel J.K., Patel M., Nanorobot: A versatile tool in nanomedicine, J. Drug. Target., 2006, 14, 63–67 http://dx.doi.org/10.1080/10611860600612862CrossrefGoogle Scholar

  • [8] Sundararajan S., Lammert P.E., Zudans A.W., Crespi V.H., Sen A., Catalytic motors for transport of colloidal cargo, Nano Lett., 2008, 8, 1271–1276 http://dx.doi.org/10.1021/nl072275jCrossrefGoogle Scholar

  • [9] Tao W.M., Zhang M., A genetic algorithm-based area coverage approach for controlled drug delivery using microrobots, Nanomed-Nanaotechnol., 2005, 1, 91–100 http://dx.doi.org/10.1016/j.nano.2004.11.006CrossrefGoogle Scholar

  • [10] Passarella R.J., Spratt D.E., van der Ende A.E., Phillips J.G., Wu H., Sathiyakumar V., et. al., Targeted nanoparticles that deliver a sustained, ispecific release of paclitaxel to irradiated tumors, Cancer Res., 2010, 70, 4550–4559 http://dx.doi.org/10.1158/0008-5472.CAN-10-0339CrossrefGoogle Scholar

  • [11] Pierige F., Serafini S., Rossi L., Magnani M., Cellbased drug delivery, Adv. Drug. Deliver. Rev., 2008, 60, 286–295 http://dx.doi.org/10.1016/j.addr.2007.08.029CrossrefGoogle Scholar

  • [12] Sutton D., Nasongkla N., Blanco E., Gao J., Functionalized micellar systems for cancer targeted drug delivery, Pharm. Res., 2007, 24, 1029–1046 http://dx.doi.org/10.1007/s11095-006-9223-yCrossrefGoogle Scholar

  • [13] Akyildiz I.F., Brunetti F., Blázquez C., Nanonetworks: A new communication paradigm, Comput. Net. 2008, 52, 2260–2279 http://dx.doi.org/10.1016/j.comnet.2008.04.001CrossrefGoogle Scholar

  • [14] Freitas R.A., Current status of nanomedicine and medical nanorobotics, J. Comput. Theor. Nanosci., 2005, 2, 1–25 Google Scholar

  • [15] Rebolj D., Fischer M., Endy D., Moore T., Sorgo A., Can we grow buildings? Concepts and requirements for automated nano- to meter-scale building, Adv. Eng. Inform., 2011, 25, 390–398 http://dx.doi.org/10.1016/j.aei.2010.08.006CrossrefGoogle Scholar

  • [16] Whitesides G.M., Nanoscience, nanotechnology, and chemistry, Small, 2005, 1, 172–179 http://dx.doi.org/10.1002/smll.200400130CrossrefGoogle Scholar

  • [17] Bishop K.J.M., Wilmer C.E., Soh S., Grzybowski B.A., Nanoscale forces and their uses in self-assembly, Small, 2009, 5, 1600–1630 http://dx.doi.org/10.1002/smll.200900358CrossrefGoogle Scholar

  • [18] Gormley A.J., Greish K., Ray A., Robinson R., Gustafson J.A., Ghandehari H., Gold nanorod mediated plasmonic photothermal therapy: A tool to enhance macromolecular delivery, Int. J. Pharm., 2011, 415, 315–318 http://dx.doi.org/10.1016/j.ijpharm.2011.05.068CrossrefGoogle Scholar

  • [19] Gupta A.K, Gupta M., Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 2005, 26, 3995–4021 http://dx.doi.org/10.1016/j.biomaterials.2004.10.012CrossrefGoogle Scholar

  • [20] Nie S., Xing Y., Kim G.J., Simons J.W., Nanotechnology applications in cancer, Annu. Rev. Biomed. Eng., 2007, 9, 257–288 http://dx.doi.org/10.1146/annurev.bioeng.9.060906.152025CrossrefGoogle Scholar

  • [21] Backer M.V., Aloise R., Przekop K., Stoletov K., Backer J.M., Molecular vehicles for targeted drug delivery, Bioconjugate Chem., 2002, 13, 462–467 http://dx.doi.org/10.1021/bc0155770CrossrefGoogle Scholar

  • [22] Fredenberg S., Wahlgren M., Reslow M., Axelsson A., The mechanisms of drug release in poly(lacticco-glycolic acid)-based drug delivery systems — A review, Int. J. Pharm., 2011, 415, 34–52 http://dx.doi.org/10.1016/j.ijpharm.2011.05.049CrossrefGoogle Scholar

  • [23] Gong G.M., Zhi F., Wang K.K., Tang X.L., Yuan A., Zhao L.L., et. al., Fabrication of a nanocarrier system through self-assembly of plasma protein and its tumor targeting, Nanotechnology, 2011, 22, 295603 http://dx.doi.org/10.1088/0957-4484/22/29/295603CrossrefGoogle Scholar

  • [24] McTaggart L.E., Halbert G.W., Assessment of polysaccharide gels as drug delivery vehicles, Int. J. Pharm., 1993, 100, 199–206 http://dx.doi.org/10.1016/0378-5173(93)90091-SCrossrefGoogle Scholar

  • [25] Neerman M.F., Zhang W., Parrish A.R., Simanek E.E., In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery, Int. J. Pharm., 2004, 281, 129–132 http://dx.doi.org/10.1016/j.ijpharm.2004.04.023CrossrefGoogle Scholar

  • [26] Peer D., Karp J.M., Hong S., Farokhzad O.C., Margalit R., Langer R., Nanocarriers as an emerging platform for cancer therapy, Nat. Nanotechnol., 2007, 2, 751–760 http://dx.doi.org/10.1038/nnano.2007.387CrossrefGoogle Scholar

  • [27] Rosler A., Vandermeulen G.W.M., Klok H.A., Advanced drug delivery devices via self-assembly of amphiphilic block copolymers, Adv. Drug. Deliver. Rev., 2001, 53, 95–108 http://dx.doi.org/10.1016/S0169-409X(01)00222-8CrossrefGoogle Scholar

  • [28] Sudimack J., Lee R.J., Targeted drug delivery via the folate receptor, Adv. Drug. Deliver. Rev., 2000, 41, 147–162 http://dx.doi.org/10.1016/S0169-409X(99)00062-9CrossrefGoogle Scholar

  • [29] Fournier-Bidoz S., Arsenault A.C., Manners I., Ozin G.A., Synthetic self-propelled nanorotors, Chem. Comm., 2005, 441 CrossrefGoogle Scholar

  • [30] Ibele M., Mallouk T.E., Sen A., Schooling behavior of light-powered autonomous micromotors in water, Angew. Chem. Int. Ed., 2009, 48, 3308–3312 http://dx.doi.org/10.1002/anie.200804704CrossrefGoogle Scholar

  • [31] Paxton W.F., Sundararajan S., Mallouk T.E, Sen A., Chemical locomotion, Angew. Chem. Int. Ed., 2006, 45, 5420–5429 http://dx.doi.org/10.1002/anie.200600060CrossrefGoogle Scholar

  • [32] Shioi A., Ban T., Morimune Y., Autonomously moving colloidal objects that resemble living matter, Entropy, 2010, 12, 2308–2332 http://dx.doi.org/10.3390/e12112308CrossrefGoogle Scholar

  • [33] Dhar P., Fischer T.M., Wang Y., Mallouk T.E., Paxton W.F., Sen A., Autonomously moving nanorods at a viscous interface, Nano Lett., 2006, 6, 66–72 http://dx.doi.org/10.1021/nl052027sCrossrefGoogle Scholar

  • [34] Miura T., Oosawa H., Sakai M., Syundou Y., Ban T., Shio A., Autonomous motion of vesicle via ion exchange, Langmuir, 2010, 26, 1610–1618 http://dx.doi.org/10.1021/la9038599CrossrefGoogle Scholar

  • [35] Hanczyc M.M., Toyota T., Ikegami T., Packard N., Sugawara T., Fatty acid chemistry at the oil-water interface: self-propelled oil droplets. J. Am. Chem. Soc., 2007, 129, 9386–9391 http://dx.doi.org/10.1021/ja0706955CrossrefGoogle Scholar

  • [36] Toyota T., Maru N., Hanczyc M.M., Ikegami T., Sugawara T., Self-propelled oil droplets consuming “fuel” surfactant, J. Am. Chem. Soc., 2009, 131, 5012–5013 http://dx.doi.org/10.1021/ja806689pCrossrefGoogle Scholar

  • [37] Sengupta S., Ibele M.E., Sen A., Fantastic voyage: designing self-powered nanorobots, Angew. Chem. Int. Ed., 2012, 51, 8434–8445 http://dx.doi.org/10.1002/anie.201202044CrossrefGoogle Scholar

  • [38] Hong Y., Blackman N.M., Kopp N.D., Sen A., Velegol D., Chemotaxis of nonbiological colloidal rods, Phys. Rev. Lett., 2007, 99, 178103 http://dx.doi.org/10.1103/PhysRevLett.99.178103CrossrefGoogle Scholar

  • [39] Pavlick R.A., Sengupta S., McFadden T., Zhang H., Sen A., A polymerization-powered motor, Angew. Chem. Int. Ed., 2011, 50, 9374–9377 http://dx.doi.org/10.1002/anie.201103565CrossrefGoogle Scholar

  • [40] Reynolds A.M., Maze-solving by chemotaxis, Phys. Rev. E, 2010, 81, 062901 http://dx.doi.org/10.1103/PhysRevE.81.062901CrossrefGoogle Scholar

  • [41] Adamatzky A.I., Computation of shortest path in cellular automata, Math. Comput. Model., 1996, 23, 105–113 http://dx.doi.org/10.1016/0895-7177(96)00006-4CrossrefGoogle Scholar

  • [42] Fuerstman M.J., Deschatelets P., Kane R., Schwartz A., Kenis P.J.A., Deutch J.M., Whitesides G.M., Solving mazes using microfluidic networks, Langmuir, 2003, 19, 4714–4722 http://dx.doi.org/10.1021/la030054xCrossrefGoogle Scholar

  • [43] Steinbock O., Tóth Á., Showalter K., Navigating complex labyrinths — Optimal paths from chemical waves, Science, 1995, 267, 868–871 http://dx.doi.org/10.1126/science.267.5199.868CrossrefGoogle Scholar

  • [44] Reyes D.R., Ghanem M.M., Whitesides G.M., Manz A., Glow discharge in microfluidic chips for visible analog computing, Lab. Chip., 2002, 2, 113–116 http://dx.doi.org/10.1039/b200589aCrossrefGoogle Scholar

  • [45] Nakagaki T., Yamada H., Tóth Á., Intelligence: Maze-solving by an amoeboid organism, Nature, 2001, 407, 470–470 http://dx.doi.org/10.1038/35035159CrossrefGoogle Scholar

  • [46] Lagzi I., Soh S., Wesson P.J., Browne K.P., Grzybowski B.A., Maze solving by chemotactic droplets, J. Am. Chem. Soc., 2010, 132, 1198–1199 http://dx.doi.org/10.1021/ja9076793CrossrefGoogle Scholar

  • [47] Szostak J.W., Bartel D.P., Luisi P.L., Synthesizing life, Nature, 2001, 409, 387–390 http://dx.doi.org/10.1038/35053176CrossrefGoogle Scholar

  • [48] Yoshida R., Self-oscillating gels driven by the Belousov-Zhabotinsky reaction as novel smart materials, Adv. Mater., 2010, 22, 3463–3483 http://dx.doi.org/10.1002/adma.200904075CrossrefGoogle Scholar

  • [49] Gallagher F.A., Kettunen M.I., Day S.E., Hu D.E., Ardenkjaer-Larsen J.H., in’t Zandt R., et. al., Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate, Nature, 2008, 453, 940–943 http://dx.doi.org/10.1038/nature07017CrossrefGoogle Scholar

  • [50] Gordon R.T., Hines J.R., Gordon D., Intracellular hyperthermia a biophysical approach to cancer treatment via intracellular temperature and biophysical alterations, Med. Hypotheses, 1979, 5, 83–102 http://dx.doi.org/10.1016/0306-9877(79)90063-XCrossrefGoogle Scholar

  • [51] Eastoe J., Sánchez-Dominquez M., Vesperinas A., Paul A., Heenan R.K., Grillo I., Photo-stabilised microemulsions, Chem. Commun., 2005, 2785 CrossrefGoogle Scholar

  • [52] Hong Y., Velegol D., Chaturvedic N., Sen A., Biomimetic behavior of synthetic particles: from microscopic randomness to macroscopic control, Phys. Chem. Chem. Phys., 2010, 12, 1423–1435 http://dx.doi.org/10.1039/b917741hCrossrefGoogle Scholar

About the article

Published Online: 2013-06-12

Published in Print: 2013-08-01


Citation Information: Open Medicine, ISSN (Online) 2391-5463, DOI: https://doi.org/10.2478/s11536-012-0130-9.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Maik Hadorn, Eva Boenzli, and Martin M. Hanczyc
Langmuir, 2016, Volume 32, Number 15, Page 3561
[2]
Pulak K. Ghosh, Yunyun Li, Fabio Marchesoni, and Franco Nori
Physical Review E, 2015, Volume 92, Number 1
[3]
Yasuhiro Ikezoe, Justin Fang, Tomasz L. Wasik, Menglu Shi, Takashi Uemura, Susumu Kitagawa, and Hiroshi Matsui
Nano Letters, 2015, Volume 15, Number 6, Page 4019
[4]
Tessy López, Emma Ortiz-Islas, Patricia Guevara, Francisco Rodríguez-Reinoso, Esteban Gómez, José Luis Cuevas, and Octavio Novaro
Journal of Materials Science, 2015, Volume 50, Number 6, Page 2410

Comments (0)

Please log in or register to comment.
Log in