Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Medicine

formerly Central European Journal of Medicine

Editor-in-Chief: Darzynkiewicz, Zbigniew


IMPACT FACTOR 2018: 1.221

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.329
Source Normalized Impact per Paper (SNIP) 2018: 0.479

ICV 2017: 152.94

Open Access
Online
ISSN
2391-5463
See all formats and pricing
More options …
Volume 9, Issue 2

Issues

Volume 10 (2015)

Biofilm formation and serum susceptibility in Pseudomonas aeruginosa

Greta Mikucionyte
  • Department of Laboratory Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 2, Kaunas LT, 50028, Lithuania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Asta Dambrauskiene
  • Department of Laboratory Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 2, Kaunas LT, 50028, Lithuania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Erika Skrodeniene
  • Department of Laboratory Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 2, Kaunas LT, 50028, Lithuania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Astra Vitkauskiene
  • Department of Laboratory Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 2, Kaunas LT, 50028, Lithuania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-02-13 | DOI: https://doi.org/10.2478/s11536-013-0241-y

Abstract

Pseudomonas aeruginosa (P. aeruginosa) is one of the most important opportunistic pathogens. The pathogenicity of P. aeruginosa has been associated with multiple bacterial virulence factors. The aim of this study was to evaluate the association between P. aeruginosa strains obtained from various clinical samples and resistance to antibiotics and pathogenicity factors, such as resistance to serum bactericidal activity and biofilm formation. This study included 121 P. aeruginosa strains isolated from clinical samples; 65 of the isolated P. aeruginosa strains were carbapenem-resistant, and 56 were carbapenem-sensitive. Carbapenem-resistant P. aeruginosa strains were more often resistant to the majority of tested antibiotics, compared to carbapenem-sensitive strains. We did not find any statistically significant difference between resistance to carbapenems and serum resistance and ability of tested P. aeruginosa strains to produce biofilms. Carbapenem-resistant P. aeruginosa strains were recovered from the urinary tract significantly more often (75.0%) than carbapenem-sensitive P. aeruginosa strains (25.0%). Carbapenem-sensitive P. aeruginosa strains were recovered significantly more often from the respiratory tract than carbapenem-resistant strains, 60.0% and 40.0%, respectively. All the P. aeruginosa strains recovered from blood were serum-resistant. P. aeruginosa strains recovered from the respiratory tract and wounds were significantly frequently serum sensitive, 95.6% and 56.6%, respectively. We did not find any differences in biofilm production among the P. aeruginosa strains recovered from different sources.

Keywords: P. aeruginosa; Antibiotic susceptibility; Biofilm; Carbapenem-resistance; Serum-bactericidal activity

  • [1] Hauser A.R., Sriram P., Severe Pseudomonas aeruginosa infections. Tackling the conundrum of drug resistance. Postgrad.Med, 2005, 117, 41–48 http://dx.doi.org/10.3810/pgm.2005.01.1571CrossrefGoogle Scholar

  • [2] Hoban D.J., Biedenbach D.J., Mutnick A.H., Jones R.N., Pathogen of occurrence and susceptibility patterns associated with pneumonia in hospitalized patients in North America: results of the SENTRY Antimicrobial Surveillance Study (2000). Diagn.Microbiol.Infect.Dis, 2003, 45, 279–285 http://dx.doi.org/10.1016/S0732-8893(02)00540-0CrossrefGoogle Scholar

  • [3] Giamarellou H., Prescribing guidelines for severe Pseudomonas infections. J.Antimicrob.Chemother, 2002, 49, 229–233 http://dx.doi.org/10.1093/jac/49.2.229CrossrefGoogle Scholar

  • [4] Saiman L., Siegel J., Infection control in cystic fibrosis. Clin.Microbiol.Rev, 2004, 17, 57–71 http://dx.doi.org/10.1128/CMR.17.1.57-71.2004CrossrefGoogle Scholar

  • [5] Cevahir N., Kaleli I., Demir M., Yildirim U., Cevik E., Gurbuz M., Investigation of serum resistance for Pseudomonas aeruginosa and Acinetobacter baumannii strains. Mikrobiyol.Bul, 2006, 40, 251–255 Google Scholar

  • [6] Vitkauskiene A., Scheuss S., Sakalauskas R., Dudzevicius V., Sahly H., Pseudomonas aeruginosa strains from nosocomial pneumonia are more serum resistant than P. aeruginosa strains from noninfectious respiratory colonization processes. Infection, 2005, 33, 356–361 http://dx.doi.org/10.1007/s15010-005-5044-xCrossrefGoogle Scholar

  • [7] Schiller N.L., Millard R.L., Pseudomonas-infected cystic fibrosis patient sputum inhibits the bactericidal activity of normal human serum. Pediatr.Res, 1983, 17, 747–752 http://dx.doi.org/10.1203/00006450-198309000-00013CrossrefGoogle Scholar

  • [8] Young L.S., Armstrong D., Human immunity to Pseudomonas aeruginosa. I. In-vitro interaction of bacteria, polymorphonuclear leukocytes, and serum factors. J.Infect.Dis, 1972, 126, 257–276 http://dx.doi.org/10.1093/infdis/126.3.257CrossrefGoogle Scholar

  • [9] Schiller N.L., Millard R.L., Pseudomonas-infected cystic fibrosis patient sputum inhibits the bactericidal activity of normal human serum. Pediatr.Res, 1983, 17, 747–752 http://dx.doi.org/10.1203/00006450-198309000-00013CrossrefGoogle Scholar

  • [10] Hancock R.E., Mutharia L.M., Chan L., Darveau R.P., Speert D.P., Pier G.B., Pseudomonas aeruginosa isolates from patients with cystic fibrosis: a class of serum-sensitive, nontypable strains deficient in lipopolysaccharide O side chains. Infect.Immun, 1983, 42, 170–177 Google Scholar

  • [11] Pier G.B., Ames P., Mediation of the killing of rough, mucoid isolates of Pseudomonas aeruginosa from patients with cystic fibrosis by the alternative pathway of complement. J.Infect.Dis, 1984, 150, 223–228 http://dx.doi.org/10.1093/infdis/150.2.223CrossrefGoogle Scholar

  • [12] Zlosnik J.E., Gunaratnam L.C., Speert D.P., Serum susceptibility in clinical isolates of burkholderia cepacia complex bacteria: development of a growth-based assay for high throughput determination. Front Cell Infect.Microbiol, 2012, 2, 67 Google Scholar

  • [13] Crespo M.P., Woodford N., Sinclair A., Kaufmann M.E., Turton J., Glover J., Velez J.D., Castaneda C.R., Recalde M., Livermore D.M., Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-8, a novel metallobeta-lactamase, in a tertiary care center in Cali, Colombia. J.Clin.Microbiol, 2004, 42, 5094–5101 http://dx.doi.org/10.1128/JCM.42.11.5094-5101.2004CrossrefGoogle Scholar

  • [14] Hall-Stoodley L., Stoodley P., Evolving concepts in biofilm infections. Cell Microbiol, 2009, 11, 1034–1043 http://dx.doi.org/10.1111/j.1462-5822.2009.01323.xWeb of ScienceCrossrefGoogle Scholar

  • [15] Mittal R., Sharma S., Chhibber S., Aggarwal S., Gupta V., Harjai K., Correlation between serogroup, in vitro biofilm formation and elaboration of virulence factors by uropathogenic Pseudomonas aeruginosa. FEMS Immunol.Med.Microbiol, 2010, 58, 237–243 http://dx.doi.org/10.1111/j.1574-695X.2009.00627.xWeb of ScienceCrossrefGoogle Scholar

  • [16] Leid J.G., Kerr M., Selgado C., Johnson C., Moreno G., Smith A., Shirtliff M.E., O’Toole G.A., Cope E.K., Flagellum-mediated biofilm defense mechanisms of Pseudomonas aeruginosa against host-derived lactoferrin. Infect.Immun, 2009, 77, 4559–4566 http://dx.doi.org/10.1128/IAI.00075-09CrossrefWeb of ScienceGoogle Scholar

  • [17] Tam V.H., Chang K.T., Abdelraouf K., Brioso C.G., Ameka M., McCaskey L.A., Weston J.S., Caeiro J.P., Garey K.W., Prevalence, resistance mechanisms, and susceptibility of multidrug-resistant bloodstream isolates of Pseudomonas aeruginosa. Antimicrob.Agents Chemother, 2010, 54, 1160–1164 http://dx.doi.org/10.1128/AAC.01446-09CrossrefGoogle Scholar

  • [18] Hocquet D., Berthelot P., Roussel-Delvallez M., Favre R., Jeannot K., Bajolet O., Marty N., Grattard F., Mariani-Kurkdjian P., Bingen E., Husson M.O., Couetdic G., Plesiat P., Pseudomonas aeruginosa may accumulate drug resistance mechanisms without losing its ability to cause bloodstream infections. Antimicrob.Agents Chemother, 2007, 51, 3531–3536 http://dx.doi.org/10.1128/AAC.00503-07CrossrefGoogle Scholar

  • [19] European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoints tables for interpretation of MICs and zone diameters, Version 2.0. 2012 Google Scholar

  • [20] Sahly H., Aucken H., Benedi V.J., Forestier C., Fussing V., Hansen D.S., Ofek I., Podschun R, Sirot D, Tomas JM, Sandvang D, and Ullmann U, Increased serum resistance in Klebsiella pneumoniae strains producing extended-spectrum beta-lactamases. Antimicrob.Agents Chemother, 2004, 48, 3477–3482 http://dx.doi.org/10.1128/AAC.48.9.3477-3482.2004CrossrefGoogle Scholar

  • [21] Vitkauskiene A., Scheuss S., Sakalauskas R., Dudzevicius V., Sahly H., Pseudomonas aeruginosa strains from nosocomial pneumonia are more serum resistant than P. aeruginosa strains from noninfectious respiratory colonization processes. Infection, 2005, 33, 356–361 http://dx.doi.org/10.1007/s15010-005-5044-xCrossrefGoogle Scholar

  • [22] Christensen G.D., Simpson W.A., Bisno A.L., Beachey E.H., Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect.Immun, 1982, 37, 318–326 Google Scholar

  • [23] Martinez J.L., Baquero F., Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clin. Microbiol.Rev, 2002, 15, 647–679 http://dx.doi.org/10.1128/CMR.15.4.647-679.2002CrossrefGoogle Scholar

  • [24] Drahovska H., Slobodnikova L., Kocincova D., Seman M., Koncekova R., Trupl J., Turna J., Antibiotic resistance and virulence factors among clinical and food enterococci isolated in Slovakia. Folia Microbiol, 2004, 49, 763–768 http://dx.doi.org/10.1007/BF02931562CrossrefGoogle Scholar

  • [25] Baylan O., Nazik H., Bektore B., Citil B.E., Turan D., Ongen B., Ozyurt M., Acikel C.H., Haznedaroglu T., The relationship between antibiotic resistance and virulence factors in urinary Enterococcus isolates. Mikrobiyol.Bul, 2011, 45, 430–445 Google Scholar

  • [26] Lagatolla C., Tonin E.A., Monti-Bragadin C., Dolzani L., Gombac F., Bearzi C., Edalucci E., Gionechetti F., Rossolini G.M., Endemic carbapenem-resistant Pseudomonas aeruginosa with acquired metallo-beta-lactamase determinants in European hospital. Emerg.Infect.Dis, 2004, 10, 535–538 http://dx.doi.org/10.3201/eid1003.020799CrossrefGoogle Scholar

  • [27] Viedma E., Juan C., Villa J., Barrado L., Orellana M.A., Sanz F., Otero J.R., Oliver A., Chaves F., VIM-2-producing Multidrug-Resistant Pseudomonas aeruginosa ST175 Clone, Spain. Emerg.Infect.Dis, 2012, 18, 1235–1241 Google Scholar

  • [28] Kouda S., Ohara M., Onodera M., Fujiue Y., Sasaki M., Kohara T., Kashiyama S., Hayashida S., Harino T., Tsuji T., Itaha H., Gotoh N., Matsubara A., Usui T., Sugai M., Increased prevalence and clonal dissemination of multidrug-resistant Pseudomonas aeruginosa with the blaIMP-1 gene cassette in Hiroshima. J.Antimicrob.Chemother, 2009, 64, 46–51 http://dx.doi.org/10.1093/jac/dkp142Web of ScienceGoogle Scholar

  • [29] Manu D., Lupan I., Popescu O., Mechanisms of pathogenesis and antibiotics resistance in Escherichia coli. Annals of RSCB, 2011, 2, 7–19 Google Scholar

  • [30] Harjai K., Khandwahaa R.K., Mittal R., Yadav V., Gupta V., Sharma S., Effect of pH on production of virulence factors by biofilm cells of Pseudomonas aeruginosa. Folia Microbiol, 2005, 50, 99–102 http://dx.doi.org/10.1007/BF02931455CrossrefGoogle Scholar

  • [31] Hostacka A., Ciznar I., Slobodnikova L., Kotulova D., Clinical pseudomonas aeruginosa: potential factors of pathogenicity and resistance to antimicrobials. Folia Microbiol, 2006, 51, 633–638 http://dx.doi.org/10.1007/BF02931631CrossrefGoogle Scholar

About the article

Published Online: 2014-02-13

Published in Print: 2014-04-01


Citation Information: Open Medicine, Volume 9, Issue 2, Pages 187–192, ISSN (Online) 2391-5463, DOI: https://doi.org/10.2478/s11536-013-0241-y.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Pooja Patel, Chinmayi Joshi, and Vijay Kothari
Advances in Pharmacological Sciences, 2019, Volume 2019, Page 1

Comments (0)

Please log in or register to comment.
Log in