Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Medicine

formerly Central European Journal of Medicine

Editor-in-Chief: Darzynkiewicz, Zbigniew

IMPACT FACTOR 2018: 1.221

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.329
Source Normalized Impact per Paper (SNIP) 2018: 0.479

ICV 2017: 152.94

Open Access
See all formats and pricing
More options …
Volume 9, Issue 2


Volume 10 (2015)

FDG-PET-CT in the early response evaluation for primary systemic therapy of breast cancer

Tímea Tőkés
  • 1st Department of Internal Medicine, Oncology Division Semmelweis University, Hungary, Budapest, 1083, Tömő u. 25-29
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ László Torgyík
  • 1st Department of Internal Medicine, Oncology Division Semmelweis University, Hungary, Budapest, 1083, Tömő u. 25-29
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Janina Kulka / Katalin Borka / Attila Szász / Andrea Tóth
  • 1st Department of Internal Medicine, Oncology Division Semmelweis University, Hungary, Budapest, 1083, Tömő u. 25-29
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ László Harsányi / Zsolt Lengyel / Tamás Györke
  • Department of Nuclear Medicine, Semmelweis University, Hungary, Budapest, 1082, Üllői út 78/A
  • Scanomed Ltd. Budapest, Hungary, Budapest, 1145, Laky Adolf u. 44-46
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Magdolna Dank
  • 1st Department of Internal Medicine, Oncology Division Semmelweis University, Hungary, Budapest, 1083, Tömő u. 25-29
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-02-13 | DOI: https://doi.org/10.2478/s11536-013-0268-0


Primary systemic therapy (PST) is a standard treatment for patients with locally advanced breast cancer. We report one of our patients to demonstrate the optimal use of FDG-PET-CT in the routine clinical workup during PST, especially when clinicians face contradictory clinical and pathological findings, and to show the advantages of this imaging modality in the decision-making process about the initial treatment choice. By reviewing the literature we would also like to confirm that FDG-PET-CT is highly sensitive in the measurement of the early therapeutic response and the prediction of the complete pathological remission, as early as after the first cycle of chemotherapy is administered.

Keywords: Breast cancer; Primary systemic therapy; FDG-PET-CT; Interim; Ki-67

  • [1] Kaufmann M, von Minckwitz G, Smith R, Valero V, Gianni L, Eiermann W et al. International expert panel on the use of primary (preoperative) systemic treatment of operable breast cancer: review and recommendations. J Clin Oncol, 2003, 21, 2600–2608 http://dx.doi.org/10.1200/JCO.2003.01.136CrossrefGoogle Scholar

  • [2] Kaufmann M, Hortobagyi GN, Goldhirsch A, Scholl S, Makris A, Valagussa P et al. Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: an update. J Clin Oncol, 2006, 24, 1940–1949 http://dx.doi.org/10.1200/JCO.2005.02.6187CrossrefGoogle Scholar

  • [3] Bonadonna G, Veronesi U, Brambilla C, Ferrari L, Luini A, Greco M et al. Primary chemotherapy to avoid mastectomy in tumors with diameters of three centimeters or more. J Natl Cancer Inst, 1990, 82, 1539–1545 http://dx.doi.org/10.1093/jnci/82.19.1539CrossrefGoogle Scholar

  • [4] Kulka J, Tokes AM, Toth AI, Szasz AM, Farkas A, Borka K et al. [Immunohistochemical phenotype of breast carcinomas predicts the effectiveness of primary systemic therapy]. Magy Onkol, 2009, 53, 335–343 http://dx.doi.org/10.1556/MOnkol.53.2009.4.2CrossrefGoogle Scholar

  • [5] Fisher B, Bryant J, Wolmark N, Mamounas E, Brown A, Fisher ER et al. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol, 1998, 16, 2672–2685 Google Scholar

  • [6] Fisher B, Brown A, Mamounas E, Wieand S, Robidoux A, Margolese RG et al. Effect of preoperative chemotherapy on local-regional disease in women with operable breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-18. J Clin Oncol, 1997, 15, 2483–2493 Google Scholar

  • [7] Wolff AC, Davidson NE. Preoperative therapy in breast cancer: lessons from the treatment of locally advanced disease. Oncologist, 2002, 7, 239–245 http://dx.doi.org/10.1634/theoncologist.7-3-239CrossrefGoogle Scholar

  • [8] Sachelarie I, Grossbard ML, Chadha M, Feldman S, Ghesani M, Blum RH. Primary systemic therapy of breast cancer. Oncologist, 2006, 11, 574–589 http://dx.doi.org/10.1634/theoncologist.11-6-574CrossrefGoogle Scholar

  • [9] Tardivon AA, Ollivier L, El Khoury C, Thibault F. Monitoring therapeutic efficacy in breast carcinomas. Eur Radiol, 2006, 16, 2549–2558 http://dx.doi.org/10.1007/s00330-006-0317-zCrossrefGoogle Scholar

  • [10] Schelling M, Avril N, Nahrig J, Kuhn W, Romer W, Sattler D et al. Positron emission tomography using [(18)F]Fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol, 2000, 18, 1689–1695 Google Scholar

  • [11] Smith IC, Welch AE, Hutcheon AW, Miller ID, Payne S, Chilcott F et al. Positron emission tomography using [(18)F]-fluorodeoxy-D-glucose to predict the pathologic response of breast cancer to primary chemotherapy. J Clin Oncol, 2000, 18, 1676–1688 Google Scholar

  • [12] Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer, 2009, 45, 228–247 http://dx.doi.org/10.1016/j.ejca.2008.10.026CrossrefGoogle Scholar

  • [13] Forrai G, Szabo E, Ormandi K, Ambrozay E, Pentek Z, Milics M et al. [Imaging methods in the current diagnosis of and screening for breast cancer]. Magy Onkol, 2010, 54, 211–216 http://dx.doi.org/10.1556/MOnkol.54.2010.3.2CrossrefGoogle Scholar

  • [14] Wahl RL, Zasadny K, Helvie M, Hutchins GD, Weber B, Cody R. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol, 1993, 11, 2101–2111 Google Scholar

  • [15] Lee JH, Rosen EL, Mankoff DA. The role of radiotracer imaging in the diagnosis and management of patients with breast cancer: part 2-response to therapy, other indications, and future directions. J Nucl Med, 2009, 50, 738–748 http://dx.doi.org/10.2967/jnumed.108.061416Web of ScienceGoogle Scholar

  • [16] Wang Y, Zhang C, Liu J, Huang G. Is 18F-FDG PET accurate to predict neoadjuvant therapy response in breast cancer? A meta-analysis. Breast Cancer Res Treat, 2012, 131, 357–369 http://dx.doi.org/10.1007/s10549-011-1780-zCrossrefWeb of ScienceGoogle Scholar

  • [17] Rousseau C, Devillers A, Sagan C, Ferrer L, Bridji B, Campion L et al. Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [18F]fluorodeoxyglucose positron emission tomography. J Clin Oncol, 2006, 24, 5366–5372 http://dx.doi.org/10.1200/JCO.2006.05.7406CrossrefGoogle Scholar

  • [18] Berriolo-Riedinger A, Touzery C, Riedinger JM, Toubeau M, Coudert B, Arnould L et al. [18F]FDGPET predicts complete pathological response of breast cancer to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging, 2007, 34, 1915–1924 http://dx.doi.org/10.1007/s00259-007-0459-5CrossrefGoogle Scholar

  • [19] Ueda S, Tsuda H, Saeki T, Omata J, Osaki A, Shigekawa T et al. Early metabolic response to neoadjuvant letrozole, measured by FDG PET/CT, is correlated with a decrease in the Ki67 labeling index in patients with hormone receptor-positive primary breast cancer: a pilot study. Breast Cancer, 2011, 18, 299–308 http://dx.doi.org/10.1007/s12282-010-0212-yCrossrefWeb of ScienceGoogle Scholar

  • [20] Schwarz-Dose J, Untch M, Tiling R, Sassen S, Mahner S, Kahlert S et al. Monitoring primary systemic therapy of large and locally advanced breast cancer by using sequential positron emission tomography imaging with [18F]fluorodeoxyglucose. J Clin Oncol, 2009, 27, 535–541 http://dx.doi.org/10.1200/JCO.2008.17.2650CrossrefWeb of ScienceGoogle Scholar

  • [21] Keam B, Im SA, Koh Y, Han SW, Oh DY, Cho N et al. Early metabolic response using FDG PET/CT and molecular phenotypes of breast cancer treated with neoadjuvant chemotherapy. BMC cancer, 2011, 11, 452 http://dx.doi.org/10.1186/1471-2407-11-452Web of ScienceCrossrefGoogle Scholar

  • [22] Kolesnikov-Gauthier H, Vanlemmens L, Baranzelli MC, Vennin P, Servent V, Fournier C et al. Predictive value of neoadjuvant chemotherapy failure in breast cancer using FDG-PET after the first course. Breast Cancer Res Treat, 2012, 131, 517–525 http://dx.doi.org/10.1007/s10549-011-1832-4CrossrefGoogle Scholar

  • [23] Groheux D, Giacchetti S, Espie M, Rubello D, Moretti JL, Hindie E. Early monitoring of response to neoadjuvant chemotherapy in breast cancer with 18F-FDG PET/CT: defining a clinical aim. Eur J Nucl Med Mol Imaging, 2011, 38, 419–425 http://dx.doi.org/10.1007/s00259-010-1660-5CrossrefGoogle Scholar

  • [24] Buck A, Schirrmeister H, Kuhn T, Shen C, Kalker T, Kotzerke J et al. FDG uptake in breast cancer: correlation with biological and clinical prognostic parameters. Eur J Nucl Med Mol Imaging, 2002, 29, 1317–1323 http://dx.doi.org/10.1007/s00259-002-0880-8CrossrefWeb of ScienceGoogle Scholar

  • [25] Buck AK, Schirrmeister H, Mattfeldt T, Reske SN. Biological characterisation of breast cancer by means of PET. Eur J Nucl Med Mol Imaging 2004, 31Suppl 1, S80–87 http://dx.doi.org/10.1007/s00259-004-1529-6CrossrefGoogle Scholar

  • [26] Buban T, Toth L, Tanyi M, Kappelmayer J, Antal-Szalmas P. [Ki-67 — new faces of an old player]. Orv Hetil, 2009, 150, 1059–1070 http://dx.doi.org/10.1556/OH.2009.28638CrossrefGoogle Scholar

  • [27] de Azambuja E, Cardoso F, de Castro G, Jr., Colozza M, Mano MS, Durbecq V et al. Ki-67 as prognostic marker in early breast cancer: a metaanalysis of published studies involving 12,155 patients. Br J Cancer, 2007, 96, 1504–1513 http://dx.doi.org/10.1038/sj.bjc.6603756Web of ScienceCrossrefGoogle Scholar

  • [28] Colozza M, Azambuja E, Cardoso F, Sotiriou C, Larsimont D, Piccart MJ. Proliferative markers as prognostic and predictive tools in early breast cancer: where are we now? Ann Oncol, 2005, 16, 1723–1739 http://dx.doi.org/10.1093/annonc/mdi352CrossrefGoogle Scholar

  • [29] Avril N, Menzel M, Dose J, Schelling M, Weber W, Janicke F et al. Glucose metabolism of breast cancer assessed by 18F-FDG PET: histologic and immunohistochemical tissue analysis. J Nucl Med, 2001, 42, 9–16 Google Scholar

  • [30] Bos R, van Der Hoeven JJ, van Der Wall E, van Der Groep P, van Diest PJ, Comans EF et al. Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol, 2002, 20, 379–387 http://dx.doi.org/10.1200/JCO.20.2.379CrossrefGoogle Scholar

  • [31] Shimoda W, Hayashi M, Murakami K, Oyama T, Sunagawa M. The relationship between FDG uptake in PET scans and biological behavior in breast cancer. Breast Cancer, 2007, 14, 260–268 http://dx.doi.org/10.2325/jbcs.14.260CrossrefGoogle Scholar

  • [32] Gil-Rendo A, Martinez-Regueira F, Zornoza G, Garcia-Velloso MJ, Beorlegui C, Rodriguez-Spiteri N. Association between [18F]fluorodeoxyglucose uptake and prognostic parameters in breast cancer. Br J Surg, 2009, 96, 166–170 http://dx.doi.org/10.1002/bjs.6459Web of ScienceCrossrefGoogle Scholar

  • [33] Koolen BB, Vrancken Peeters MJ, Wesseling J, Lips EH, Vogel WV, Aukema TS et al. Association of primary tumour FDG uptake with clinical, histopathological and molecular characteristics in breast cancer patients scheduled for neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging, 2012, 39, 1830–1838 http://dx.doi.org/10.1007/s00259-012-2211-zCrossrefWeb of ScienceGoogle Scholar

  • [34] Tchou J, Sonnad SS, Bergey MR, Basu S, Tomaszewski J, Alavi A et al. Degree of tumor FDG uptake correlates with proliferation index in triple negative breast cancer. Mol Imaging Biol, 2010, 12, 657–662 http://dx.doi.org/10.1007/s11307-009-0294-0Web of ScienceCrossrefGoogle Scholar

  • [35] Varga Z, Diebold J, Dommann-Scherrer C, Frick H, Kaup D, Noske A et al. How reliable is Ki-67 immunohistochemistry in grade 2 breast carcinomas? A QA study of the Swiss Working Group of Breast- and Gynecopathologists. PloS one, 2012, 7, e37379 http://dx.doi.org/10.1371/journal.pone.0037379Web of ScienceGoogle Scholar

  • [36] Iqbal S, Anderson TJ, Marson LP, Prescott RJ, Dixon JM, Miller WR. MIB-1 assessments in breast cancers. Breast, 2002, 11, 252–256 http://dx.doi.org/10.1054/brst.2002.0408CrossrefGoogle Scholar

  • [37] Berruti A, Generali D, Kaufmann M, Puztai L, Curigliano G, Aglietta M et al. International expert consensus on primary systemic therapy in the management of early breast cancer: highlights of the Fourth Symposium on Primary Systemic Therapy in the Management of Operable Breast Cancer, Cremona, Italy (2010). Journal of the National Cancer Institute Monographs, 2011, 147–151 Google Scholar

About the article

Published Online: 2014-02-13

Published in Print: 2014-04-01

Citation Information: Open Medicine, Volume 9, Issue 2, Pages 306–312, ISSN (Online) 2391-5463, DOI: https://doi.org/10.2478/s11536-013-0268-0.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in