Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Medicine

formerly Central European Journal of Medicine

Editor-in-Chief: Darzynkiewicz, Zbigniew


IMPACT FACTOR 2018: 1.221

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.329
Source Normalized Impact per Paper (SNIP) 2018: 0.479

ICV 2017: 152.94

Open Access
Online
ISSN
2391-5463
See all formats and pricing
More options …
Volume 9, Issue 2

Issues

Volume 10 (2015)

Scutellarein ameliorates tongue cancer cells via mitochondria

Guangping Jing / Jinhua Zheng / Xueyong Wang / Haixia Li / Xiaohui Jiao
  • Department of Oral & Maxillofacial Surgery, Stomatological College, Harbin Medical University, Harbin, 150001, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-02-13 | DOI: https://doi.org/10.2478/s11536-013-0269-z

Abstract

To investigate the mechanism in Scutellarein-induced apoptosis of SAS human tongue cancer cells, inhibitory effects of Scutellarein on SAS cells were detected by MTT assay. Cell apoptosis was analyzed by flow cytometry. Ultrastructural changes of SAS cells were observed by transmission electron microscopy (TEM). Mitochondrial transmembrane potential (ΔΨm) were analyzed by JC-1 [5,5,6,6-Tetrachloro-1,1,3,3-tetraethylbenzimidazolylcarbocyanine iodide]. Western blotting was used to examine the expression level of Bcl-2, Bax and caspase-3 in SAS cells treated with Scutellarein. Scutellarein inhibited the proliferation of SAS cells in a time and dose-dependent manner and increased the percent of apoptotic cells. The mitochondrial cristae were swollen and had vacuolar degeneration. ΔΨm decreased when the concentration of scutellarein increased. Scutellarein effectively up-regulated the expression of mitochondrial Bax and caspase-3 and down-regulated the expression of Bcl-2. Scutellarein induces apoptosis of SAS human tongue cancer cells via activating mitochondrial signaling pathway.

Keywords: Scutellarein; Mitochondria; Apoptosis; SAS Tongue cancer cell

  • [1] Myoung H, Kim MJ, Hong SD et al. Expression of membrane type I-matrix metalloproteinase in oral squamous cell carcinoma. Cancer Lett 2002; 185: 201–209 http://dx.doi.org/10.1016/S0304-3835(02)00281-1CrossrefGoogle Scholar

  • [2] Miyazaki Y, Hara A, Kato K et al. The effect of hypoxic microenvironment on matrix metalloproteinase expression in xenografts of human oral squamous cell carcinoma. Int J Oncol 2008; 32: 145–151 Google Scholar

  • [3] Panchal RG. Novel therapeutic strategies to selectively kill cancer cells. Biochem Pharmacol 1998; 55: 247–252 http://dx.doi.org/10.1016/S0006-2952(97)00240-2CrossrefGoogle Scholar

  • [4] Sun MY, Zuo J, Duan JF et al. [Antitumor activities of kushen flavonoids in vivo and in vitro]. Zhong Xi Yi Jie He Xue Bao 2008; 6: 51–59 http://dx.doi.org/10.3736/jcim20080111CrossrefGoogle Scholar

  • [5] Wang T, Zhang JC, Chen Y et al. [Comparison of antioxidative and antitumor activities of six flavonoids from Epimedium koreanum]. Zhongguo Zhong Yao Za Zhi 2007; 32: 715–718 Google Scholar

  • [6] Lahiri-Chatterjee M, Katiyar SK, Mohan RR et al. A flavonoid antioxidant, silymarin, affords exceptionally high protection against tumor promotion in the SENCAR mouse skin tumorigenesis model. Cancer Res 1999; 59: 622–632 Google Scholar

  • [7] Choi SU, Ryu SY, Yoon SK et al. Effects of flavonoids on the growth and cell cycle of cancer cells. Anticancer Res 1999; 19: 5229–5233 Google Scholar

  • [8] Liu JJ, Huang TS, Cheng WF et al. Baicalein and baicalin are potent inhibitors of angiogenesis: Inhibition of endothelial cell proliferation, migration and differentiation. Int J Cancer 2003; 106: 559–565 DOI: 10.1002/ijc.11267 http://dx.doi.org/10.1002/ijc.11267CrossrefGoogle Scholar

  • [9] Huang WH, Lee AR, Yang CH. Antioxidative and anti-inflammatory activities of polyhydroxyflavonoids of Scutellaria baicalensis GEORGI. Biosci Biotechnol Biochem 2006; 70: 2371–2380 http://dx.doi.org/10.1271/bbb.50698CrossrefGoogle Scholar

  • [10] Yu J, Lei J, Yu H et al. Chemical composition and antimicrobial activity of the essential oil of Scutellaria barbata. Phytochemistry 2004; 65: 881–884 DOI: 10.1016/j.phytochem.2004.02.005 http://dx.doi.org/10.1016/j.phytochem.2004.02.005CrossrefWeb of ScienceGoogle Scholar

  • [11] Wang CZ, Li XL, Wang QF et al. Selective fraction of Scutellaria baicalensis and its chemopreventive effects on MCF-7 human breast cancer cells. Phytomedicine 2010; 17: 63–68 DOI: 10.1016/j. phymed.2009.07.003 http://dx.doi.org/10.1016/j.phymed.2009.07.003CrossrefWeb of ScienceGoogle Scholar

  • [12] Ye F, Che Y, McMillen E et al. The effect of Scutellaria baicalensis on the signaling network in hepatocellular carcinoma cells. Nutr Cancer 2009; 61: 530–537 DOI: 10.1080/01635580902803719 http://dx.doi.org/10.1080/01635580902803719Web of ScienceCrossrefGoogle Scholar

  • [13] Chen LG, Hung LY, Tsai KW et al. Wogonin, a bioactive flavonoid in herbal tea, inhibits inflammatory cyclooxygenase-2 gene expression in human lung epithelial cancer cells. Mol Nutr Food Res 2008; 52: 1349–1357 DOI: 10.1002/mnfr.200700329 http://dx.doi.org/10.1002/mnfr.200700329CrossrefWeb of ScienceGoogle Scholar

  • [14] Liu XH, Kirschenbaum A, Yao S et al. Inhibition of cyclooxygenase-2 suppresses angiogenesis and the growth of prostate cancer in vivo. J Urol 2000; 164: 820–825 http://dx.doi.org/10.1016/S0022-5347(05)67321-1CrossrefGoogle Scholar

  • [15] Goh D, Lee YH, Ong ES. Inhibitory effects of a chemically standardized extract from Scutellaria barbata in human colon cancer cell lines, LoVo. J Agric Food Chem 2005; 53: 8197–8204 DOI: 10.1021/jf051506+ http://dx.doi.org/10.1021/jf051506+CrossrefGoogle Scholar

  • [16] Lee TK, Kim DI, Song YL et al. Differential inhibition of Scutellaria barbata D. Don (Lamiaceae) on HCG-promoted proliferation of cultured uterine leiomyomal and myometrial smooth muscle cells. Immunopharmacol Immunotoxicol 2004; 26: 329–342 http://dx.doi.org/10.1081/IPH-200026841CrossrefGoogle Scholar

  • [17] Lee SW, Song GS, Kwon CH et al. Beneficial effect of flavonoid baicalein in cisplatin-induced cell death of human glioma cells. Neurosci Lett 2005; 382: 71–75 DOI: 10.1016/j.neulet.2005.03.005 http://dx.doi.org/10.1016/j.neulet.2005.03.005CrossrefGoogle Scholar

  • [18] Ma Z, Otsuyama K, Liu S et al. Baicalein, a component of Scutellaria radix from Huang-Lian-Jie-Du-Tang (HLJDT), leads to suppression of proliferation and induction of apoptosis in human myeloma cells. Blood 2005; 105: 3312–3318 DOI: 10.1182/blood-2004-10-3915 http://dx.doi.org/10.1182/blood-2004-10-3915CrossrefGoogle Scholar

  • [19] Ujiki MB, Ding XZ, Salabat MR et al. Apigenin inhibits pancreatic cancer cell proliferation through G2/M cell cycle arrest. Mol Cancer 2006; 5: 76 http://dx.doi.org/10.1186/1476-4598-5-76CrossrefGoogle Scholar

  • [20] Way TD, Kao MC, Lin JK. Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway. J Biol Chem 2004; 279: 4479–4489 http://dx.doi.org/10.1074/jbc.M305529200CrossrefGoogle Scholar

  • [21] Kim DI, Lee TK, Lim IS et al. Regulation of IGF-I production and proliferation of human leiomyomal smooth muscle cells by Scutellaria barbata D. Don in vitro: isolation of flavonoids of apigenin and luteolin as acting compounds. Toxicol Appl Pharmacol 2005; 205: 213–224 DOI: 10.1016/j. taap.2004.10.007 CrossrefGoogle Scholar

  • [22] Kim Jinh, Lee Eunok, Lee Hyoj et al. Caspase Activation and Extracellular Signal — Regulated Kinase/Akt Inhibition Were Involved in Luteolin — Induced Apoptosis in Lewis Lung Carcinoma Cells. Ann N Y Acad Sci 2007; 1095: 598–611 http://dx.doi.org/10.1196/annals.1397.102_2CrossrefGoogle Scholar

  • [23] Zhang K, Guo QL, You QD et al. Wogonin induces the granulocytic differentiation of human NB4 promyelocytic leukemia cells and up-regulates phospholipid scramblase 1 gene expression. Cancer Sci 2008; 99: 689–695 DOI: 10.1111/j.1349-7006.2008.00728.x http://dx.doi.org/10.1111/j.1349-7006.2008.00728.xCrossrefWeb of ScienceGoogle Scholar

  • [24] Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature 2001; 411: 342–348 DOI: 10.1038/35077213 http://dx.doi.org/10.1038/35077213Web of ScienceCrossrefGoogle Scholar

  • [25] Dixon S, Soriano B, Lush R et al. Apoptosis: its role in the development of malignancies and its potential as a novel therapeutic target. The Annals of pharmacotherapy 1997; 31: 76–82 Google Scholar

  • [26] Parajuli P, Joshee N, Rimando AM et al. In vitro an -titumor mechanisms of various Scutellaria extracts and constituent flavonoids. Planta Med 2009; 75: 41–48 http://dx.doi.org/10.1055/s-0028-1088364CrossrefWeb of ScienceGoogle Scholar

  • [27] Hockenbery D, Nuñez G, Milliman C et al. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990; 348: 334–336 http://dx.doi.org/10.1038/348334a0CrossrefGoogle Scholar

  • [28] Ricci JE, Waterhouse N, Green DR. Mitochondrial functions during cell death, a complex (I-V) dilemma. Cell Death Differ 2003; 10: 488–492 DOI: 10.1038/sj.cdd.4401225 http://dx.doi.org/10.1038/sj.cdd.4401225CrossrefGoogle Scholar

  • [29] Reed JC, Green DR. Remodeling for demolition: changes in mitochondrial ultrastructure during apoptosis. Mol Cell 2002; 9: 1–3 http://dx.doi.org/10.1016/S1097-2765(02)00437-9CrossrefGoogle Scholar

  • [30] Wang F, Ma R, Yu L. Role of mitochondria and mitochondrial cytochrome c in tubeimoside I-mediated apoptosis of human cervical carcinoma HeLa cell line. Cancer Chemother Pharmacol 2006; 57: 389–399 DOI: 10.1007/s00280-005-0047-y http://dx.doi.org/10.1007/s00280-005-0047-yCrossrefGoogle Scholar

  • [31] Gardner CR. Anticancer drug development based on modulation of the Bcl-2 family core apoptosis mechanism. Expert Rev Anticancer Ther 2004; 4: 1157–1177 http://dx.doi.org/10.1586/14737140.4.6.1157CrossrefGoogle Scholar

  • [32] Kim KW, Jin UH, Kim DI et al. Antiproliferative effect of Scutellaria barbata D. Don. on cultured human uterine leiomyoma cells by down-regulation of the expression of Bcl-2 protein. Phytother Res 2008; 22: 583–590 DOI: 10.1002/ptr.1996 CrossrefGoogle Scholar

  • [33] Chui CH, Lau FY, Tang JC et al. Activities of fresh juice of Scutellaria barbata and warmed water extract of Radix Sophorae Tonkinensis on anti-proliferation and apoptosis of human cancer cell lines. Int J Mol Med 2005; 16: 337–341 Google Scholar

About the article

Published Online: 2014-02-13

Published in Print: 2014-04-01


Citation Information: Open Medicine, Volume 9, Issue 2, Pages 193–199, ISSN (Online) 2391-5463, DOI: https://doi.org/10.2478/s11536-013-0269-z.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Kasumi Nakamura, Jia-Hua Yang, Eiji Sato, Naoyuki Miura, and Yi-Xin Wu
Biological & Pharmaceutical Bulletin, 2015, Volume 38, Number 6, Page 935

Comments (0)

Please log in or register to comment.
Log in