Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Medicine

formerly Central European Journal of Medicine

Editor-in-Chief: Darzynkiewicz, Zbigniew


IMPACT FACTOR 2018: 1.221

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.329
Source Normalized Impact per Paper (SNIP) 2018: 0.479

ICV 2018: 156.09

Open Access
Online
ISSN
2391-5463
See all formats and pricing
More options …
Volume 9, Issue 5

Issues

Volume 10 (2015)

Increased oxidative stress status in rat serum after five minutes treadmill exercise

Florin-Petrut Trofin / Alin Ciobica
  • “Alexandru Ioan Cuza” University, Iasi, 700506, Romania
  • Center of Biomedical Research of the Romanian Academy, Iasi Branch, Iasi, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dumitru Cojocaru / Marin Chirazi / Cezar Honceriu / Laurentiu Trofin / Dragomir Serban / Daniel Timofte / Sabina Cojocaru / Emil Anton
Published Online: 2014-07-31 | DOI: https://doi.org/10.2478/s11536-013-0329-4

Abstract

Although it is accepted that an important correlation exists between the physical exercise and the oxidative stress status, the data regarding the levels of the main oxidative stress markers after physical training have been difficult to interpret and a subject of many controversies. There are also very few studies regarding the effects of short-time exercise on the oxidative stress status modifications. Thus, in the present report we were interested in studying the modifications of some oxidative stress markers (two antioxidant enzymes-superoxide dismutase and glutathione peroxidase, a lipid peroxidation parameter — malondyaldehide, the total antioxidant status and protein carbonyl levels), from the serum of rats that were subject to one bout of five minutes exercise on a treadmill, when compared to a control sedentary group. In this way, we observed a decrease of superoxide dismutase specific activity in the rats which performed the exercises. Still, no modifications of glutathione peroxidase specific activity were found between groups. In addition, increased levels of malondyaldehide and protein carbonyls were observed in the rats subjected to exercises. In conclusion, our data provides new evidence regarding the increase of the oxidative stress status, as a result of a 5-minutes bout of treadmill exercising in rats, expressed through a decrease in the SOD specific activity and the total antioxidant status and also an increase of the lipid peroxidation and protein oxidation processes.

Keywords: Exercise; Rat; Oxidative stress; Treadmill

  • [1] Sies H. Oxidative stress: oxidants and antioxidants. Experimental Physiology 1997; 82: 291–295 Google Scholar

  • [2] Reid MB, Khawli FA, Moody MR. Reactive oxygen in skeletal muscle. III. Contractility of unfatigued muscle. J Appl Physiol 1993; 75: 1081–1087 Google Scholar

  • [3] Reid MB. Redox modulation of skeletal muscle contraction: what we know and what we don’t. J Appl Physiol 2001; 90: 724–731 http://dx.doi.org/10.1063/1.1381002CrossrefGoogle Scholar

  • [4] Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 2008; 88: 1243–1276 http://dx.doi.org/10.1152/physrev.00031.2007CrossrefWeb of ScienceGoogle Scholar

  • [5] Barclay JK, Hansel M. Free radicals may contribute to oxidative skeletal muscle fatigue. Can J Physiol Pharmacol 1991; 69: 279–284 http://dx.doi.org/10.1139/y91-043CrossrefGoogle Scholar

  • [6] Reid MB, Shoji T, Moody MR, Entman ML. Reactive oxygen in skeletal muscle. II. Extracellular release of free radicals. J Appl Physiol 1992; 73: 1805–1809 Google Scholar

  • [7] Ji LL. Antioxidants and Oxidative Stress in Exercise. Exp Biol Med 1999; 222: 283–292 http://dx.doi.org/10.1046/j.1525-1373.1999.d01-145.xCrossrefGoogle Scholar

  • [8] Leichtweis S, Leeuwenburgh C, Fiebig R, Parmelee D, Yu XX, Ji LL. Rigorous swim training deteriorates mitochondrial function in rat heart. Acta Physiol Scand 1997; 160: 139–148 http://dx.doi.org/10.1046/j.1365-201X.1997.00138.xCrossrefGoogle Scholar

  • [9] Evelo CT, Palmen NG, Artur Y, Janssen GM. Changes in blood glutathione concentrations, and in erythrocyte glutathione reductase and glutathione S-transferase activity after running training and after participation in contests. Eur J Appl Physiol 1992; 64: 354–358 http://dx.doi.org/10.1007/BF00636224CrossrefGoogle Scholar

  • [10] Robertson JD, Maughan RJ, Duthie GG, Morrice PC. Increased blood antioxidant systems of runners in response to training. Clin Sci 1991; 80: 611–618 Google Scholar

  • [11] Marin E, Kretzschmar M, Arokoski J, Hanninen O, Klinger W. Enzymes of glutathione synthesis in dog skeletal muscle and their response to training. Acta Physiol Scand 1993; 147: 369–373 http://dx.doi.org/10.1111/j.1748-1716.1993.tb09513.xCrossrefGoogle Scholar

  • [12] Ohno H, Suzuki K, Fujii J, Yamashita H, Kizaki T, Oh-ishi S, Taniguchi N. Superoxide dismutases in exercise and disease. Exercise and Oxygen Toxicity 1994; 1: 127–161 Google Scholar

  • [13] Ji LL, Dillon D, Wu E. Alteration of antioxidant enzymes with aging in rat skeletal muscle and liver. Am J Physiol 1990; 258: 918–923 Google Scholar

  • [14] Powers SK, Criswell D, Lawler J, Ji LL, Martin D, Herb R, Dudley G. Influence of exercise intensity and duration on antioxidant enzyme activity in skeletal muscle differing in fiber type. Am J Physiol 1994; 266: 375–380 Google Scholar

  • [15] Tiidus PM, Pushkarenko J, Houston ME. Lack of antioxidant adaptation to short-term aerobic training in human muscle. Am J Physiol 1996; 271: 832–836 Google Scholar

  • [16] Ji LL. Antioxidant enzyme response to exercise and aging. Med Sci Sports Exerc 1993; 25: 225–231 http://dx.doi.org/10.1249/00005768-199302000-00011CrossrefGoogle Scholar

  • [17] Leeuwenburgh C, Ji LL. Alteration of glutathione and antioxidant status with exercise in unfed and refed rats. J Nutr 1996; 126: 1833–1843 Google Scholar

  • [18] Leeuwenburgh C, Ji LL. Glutathione depletion in rested and exercised mice: Biochemical consequence and adaptation. Arch Biochem Biophys 1995; 316: 941–949 http://dx.doi.org/10.1006/abbi.1995.1125CrossrefGoogle Scholar

  • [19] Laughlin MH, Simpson T, Sexton WL, Brown OR, Smith JK, Korthuis RJ. Skeletal muscle oxidative capacity, antioxidant enzymes, and exercise training. J Appl Physiol 1990; 68: 2337–2343 Google Scholar

  • [20] Ciobica A, Olteanu Z, Padurariu M, Hritcu L. The effects of pergolide on memory and oxidative stress in a rat model of Parkinson’s disease. J Physiol Biochem 2012; 68: 59–69 http://dx.doi.org/10.1007/s13105-011-0119-xCrossrefWeb of ScienceGoogle Scholar

  • [21] Ciobica A, Hritcu L, Nastasa V, Padurariu M, Bild W. Inhibition of central angiotensin converting enzyme exerts anxiolytic effects by decreasing brain oxidative stress. Journal of Medical Biochemistry 2011; 30: 109–114 http://dx.doi.org/10.2478/v10011-011-0009-3CrossrefWeb of ScienceGoogle Scholar

  • [22] Gurzu C, Artenie V, Hritcu L, Ciobica A. Prenatal testosterone improves the spatial learning and memory by protein synthesis in different lobes of the brain in the male and female rat. Cent. Eur. J. Biol 2008; 3: 39–47 http://dx.doi.org/10.2478/s11535-008-0003-zCrossrefWeb of ScienceGoogle Scholar

  • [23] Dillard CJ, Litov RE, Savin WM, Dumelin EE, Tappel AL. Effects of exercise, vitamin E, ozone on pulmonary function and lipid peroxidation. J Appl Physiol 1978; 45: 927–932 Google Scholar

  • [24] Kondo H, Miura M, Itokawa Y. Antioxidant enzyme systems in skeletal muscle atrophied by immobilization. Pflugers Arch 1993; 422: 404–406 http://dx.doi.org/10.1007/BF00374299CrossrefGoogle Scholar

  • [25] Alessio HM, Goldfarb AH. Lipid peroxidation and scavenger enzymes during exercise: Adaptive response to training. J Appl Physiol 1988; 64: 1333–1336 Google Scholar

  • [26] Higuchi M, Cartier LJ, Chen M, Holloszy JO. Superoxide dismutase and catalase in skeletal muscle: Adaptive response to exercise. J Gerontol 1985; 40: 281–286 http://dx.doi.org/10.1093/geronj/40.3.281CrossrefGoogle Scholar

  • [27] Powers SK, Criswell D, Lawler J, Ji LL, Martin D, Herb R, Dudley G. Influence of exercise intensity and duration on antioxidant enzyme activity in skeletal muscle differing in fiber type. Am J Physiol 1994; 266: 375–380 Google Scholar

  • [28] Leeuwenburgh C, Fiebig R, Chandwaney R, Ji LL. Aging and exercise training in skeletal muscle: Response of glutathione and antioxidant enzyme systems. Am J Physiol 1994; 267: 439–445 Google Scholar

  • [29] Hollander J, Fiebig R, Gore M, Bejma J, Ohno H, Ji LL. Superoxide dismutase gene expression: Fiberspecific adaptation to endurance training. Am J Physiol 1999; 277: 856–862 Google Scholar

  • [30] Oh-Ishi S, Kizaki T, Nagaswa J, Izawa T, Komabayashi T, Nagata N, Suzuki K, Taniguchi N, Ohno H. Effects of endurance training on superoxide dismutase activity, content, and mRNA expression in rat muscle. Clin Exp Pharmacol Physiol 1997; 24: 326–332 http://dx.doi.org/10.1111/j.1440-1681.1997.tb01196.xCrossrefGoogle Scholar

  • [31] Ji LL, Fu RG. Responses of glutathione system and antioxidant enzymes to exhaustive exercise and hydroperoxide. J Appl Physiol 1992; 72: 549–554 Google Scholar

  • [32] Sentürk UK, Gündüz F, Kuru O, Aktekin MR, Kipmen D, Yalçin O et al. Exercise-induced oxidative stress affects erythrocytes in sedentary rats but not exercise-trained rats. J Appl Physiol 2001; 91: 1999–2004 Google Scholar

  • [33] Jackson MJ, Khassaf M, Vasilaki A, McArdle F, McArdle A. Vitamin E and the oxidative stress of exercise. Ann NY Acad Sci 2004; 1031: 158–168 http://dx.doi.org/10.1196/annals.1331.015CrossrefGoogle Scholar

  • [34] Jackson MJ, Pye D, Palomero J. The production of reactive oxygen and nitrogen species by skeletal muscle. J Appl Physiol 2007; 102: 1664–1670 http://dx.doi.org/10.1152/japplphysiol.01102.2006CrossrefGoogle Scholar

  • [35] Novelli GP, Bracciotti G, Falsini S. Spin-trappers and vitamin E prolong endurance to muscle fatigue in mice. Free Radic Biol Med 1990; 8: 9–13 http://dx.doi.org/10.1016/0891-5849(90)90138-9CrossrefGoogle Scholar

  • [36] Shindoh C, DiMarco A, Thomas A, Manubay P, Supinski G. Effect of N-acetylcysteine on diaphragm fatigue. J Appl Physiol 1990; 68: 2107–2113 Google Scholar

  • [37] Powers SK, DeRuisseau KC, Quindry J, Hamilton KL. Dietary antioxidants and exercise. J Sports Sci 2004; 22: 81–94 http://dx.doi.org/10.1080/0264041031000140563CrossrefGoogle Scholar

  • [38] Diaz PT, Costanza MJ, Wright VP, Julian MW, Diaz JA, Clanton TL. Dithiothreitol improves recovery from in vitro diaphragm fatigue. Med Sci Sports Exerc 1998; 30: 421–426 http://dx.doi.org/10.1097/00005768-199803000-00013CrossrefGoogle Scholar

  • [39] Khawli FA, Reid MB. N-acetylcysteine depresses contractile function and inhibits fatigue of diaphragm in vitro. J Appl Physiol 1994; 77: 317–324 Google Scholar

  • [40] Yesilkaya A, Ertug Z, Yegin A, Melikoglu M, Baskurt OK. Deformability and oxidant stress in red blood cells under the influence of halothane and isoflurane anesthesia. Gen Pharmacol. 1998; 31: 33–36 http://dx.doi.org/10.1016/S0306-3623(97)00426-6CrossrefGoogle Scholar

  • [41] Kotzampassi K, Kolios G, Manousou P, Kazamias P, Paramythiotis D, Papavramidis TS et al. Oxidative stress due to anesthesia and surgical trauma: importance of early enteral nutrition. Mol Nutr Food Res. 2009; 53: 770–779 http://dx.doi.org/10.1002/mnfr.200800166Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2014-07-31

Published in Print: 2014-10-01


Citation Information: Open Medicine, Volume 9, Issue 5, Pages 722–728, ISSN (Online) 2391-5463, DOI: https://doi.org/10.2478/s11536-013-0329-4.

Export Citation

© 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ewa Jówko, Maciej Płaszewski, Maciej Cieśliński, Tomasz Sacewicz, Igor Cieśliński, and Marta Jarocka
BMC Sports Science, Medicine and Rehabilitation, 2019, Volume 11, Number 1
[2]
Ewa Jówko, Paweł Różański, and Andrzej Tomczak
International Journal of Environmental Research and Public Health, 2018, Volume 15, Number 10, Page 2066

Comments (0)

Please log in or register to comment.
Log in