Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Medicine

formerly Central European Journal of Medicine

Editor-in-Chief: Darzynkiewicz, Zbigniew


IMPACT FACTOR 2018: 1.221

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.329
Source Normalized Impact per Paper (SNIP) 2018: 0.479

ICV 2018: 156.09

Open Access
Online
ISSN
2391-5463
See all formats and pricing
More options …
Volume 10, Issue 1

Issues

Volume 10 (2015)

Postprandial decrease in LDL-cholesterol in men with metabolic syndrome

Anna Skoczyńska
  • Wroclaw Medical University, Department of Internal and Occupational Diseases, and Hypertension, Borowska 213, 50-556 Wrocław, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Barbara Turczyn
  • Department of Internal Diseases and Hypertension, Wroclaw Medical University, Wrocław, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Wojakowska
  • Department of Internal Diseases and Hypertension, Wroclaw Medical University, Wrocław, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bogusława Kreczyńska
  • Department of Internal Diseases and Hypertension, Wroclaw Medical University, Wrocław, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marta Skoczyńska
  • Department of Internal Diseases and Hypertension, Wroclaw Medical University, Wrocław, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kamila Wojtas
  • Department of Internal Diseases and Hypertension, Wroclaw Medical University, Wrocław, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-02-03 | DOI: https://doi.org/10.1515/med-2015-0025

Abstract

Background: In some epidemiological studies, blood lipids are determined at non-fasting state, which may impact cardiovascular risk estimation. The aim of this study was to evaluate postprandial LDL-C changes in men with newly diagnosed metabolic syndrome (MetSy). Methods: 36 male patients were examined: 12 men with and 24 men without MetSy. The fat tolerance test was performed before and after a three-month hypolipidemic treatment. Serum lipids were measured using routine methods, lipid peroxides (LPO) colorimetrically, apoli- poproteins A-I, B, and hsCRP immunoturbidimetrically. Results: The postprandial increase in triglycerides was associated with a decrease in LDL-C and a small decrease in apo B. In men with MetSy, the mean change in LDL-C (-19.5 ± 2.3 mg/dl) was greater than in healthy men (-5.7 ± 3.8 mg/dl). All lipid changes (ΔTG, ΔLDL-C and ΔLPO) were linearly dependent on the postprandial non-LDL-choles- terol. After three months of hypolipidemic treatment, in all men with MetSy, the apoB/apoA-I ratio remained the same as before the therapy. Conclusion: In men diagnosed with MetSy, postprandial decreases in LDL-cholesterol may cause underestimation of cardiovascular risk. After three months of hypolipidemic treatment, there was only a partial reduction in this risk, as the apoB/apoA-I ratio remained the same.

Keywords: Postprandial LDL-cholesterol; metabolic syn- drome; apoB/apoA ratio

References

  • [1] Reaven GM. The Metabolic Syndrome: Requiescat in Pace. Clin Chem. 2005; 51: 931-938 CrossrefGoogle Scholar

  • [2] Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640–1645 Google Scholar

  • [3] Achimastos AD, Efstathiou SP, Christoforatos T, Panagiotou TN, Stergiou GS, Mountokalakis TD. Arterial stiffness: determinants relationship to the metabolic syndrome. Angiology. 2007;58:11-20 Web of ScienceCrossrefGoogle Scholar

  • [4] Beijers HJ, Henry RM, Bravenboer B, Ferreira I, Dekker JM, Nijpels G, Stehouwer CD.Metabolic Syndrome in Nondiabetic Individuals Associated With Maladaptive Carotid Remodeling: The Hoorn Study.Am J Hypertens. 2011 Jan 6. CrossrefGoogle Scholar

  • [Epub ahead of print]. PubMedGoogle Scholar

  • [5] Tzou WS, Douglas PS, Srinivasan SR, Chen W, Berenson G, Stein JH. Advanced lipoprotein testing does not improve identification of subclinical atherosclerosis in young adults: the Bogalusa Heart Study. ANN Intern Med. 2005;142:742-50 Google Scholar

  • [6] Galassi A, Reynolds K, He J. Metabolic syndrome and risk of cardiovascular disease: a meta-analysis. Am J Med. 2006;119:812–819 CrossrefGoogle Scholar

  • [7] Gami AS, Witt BJ, Howard DE, Erwin PJ, Gami LA, Somers VK, Montori VM. Metabolic syndrome and risk of incident cardiovascular events and death: a systematic review and meta-analysis of longitudinal studies. J Am Coll Cardiol. 2007;49:403–414 Web of ScienceCrossrefGoogle Scholar

  • [8] Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, Rinfret S, Schiffrin EL, Eisenberg MJ. The metabolic syndrome and cardiovascular risk. A systematic review and meta-analysis. J Am CollCardiol. 2010;56:1113–1132 CrossrefGoogle Scholar

  • [9] Li J, Flammer AJ, Lennon RJ, Nelson RE, Gulati R, Friedman PA, Thomas RJ, Sandhu NP, Hua Q, Lerman LO, Lerman A. Comparison of the effect of the metabolic syndrome and multiple traditional cardiovascular risk factors on vascular function. Mayo Clin Proc. 2012;87:968-75 Web of ScienceCrossrefGoogle Scholar

  • [10] Nofer JR, Kehre B, Fobker M, Levkau B, Assman G, von Eckardstein A. HDL and arteriosclerosis: beyond reverse cholesterol transport. Atherosclerosis. 2002;161:1-16. Google Scholar

  • [11] Barter P. The role of HDL-cholesterol in preventing atherosclerotic disease. Eur Heart J Suppl 2005;7:F4-F8 CrossrefGoogle Scholar

  • [12] Andrews KL, Moore XL, Chin-Dusting JP. Anti-atherogenic effects of high-density lipoprotein on nitric oxide synthesis in the endothelium.Clin Exp Pharmacol Physiol. 2010;37:736-42 CrossrefWeb of ScienceGoogle Scholar

  • [13] Onat A, Can G, Yüksel H. Dysfunction of high-density lipoprotein and its apolipoproteins: New mechanisms underlying cardiometabolic risk in the population at large Turk Kardiyol Dern Ars. 2012;40:368-85 Google Scholar

  • [14] Calabro P, Yeh ETH. Intra-abdominal adiposity, inflammation, and cardiovascular risk: New insight into global cardiometabolic risk.Current Hypertension Rep. 2008;10:32-38 Google Scholar

  • [15] Yuan G, Al-Shali KZ, Hegele R. Hypertriglyceridemia: its etiology, effects and treatment. CMAJ. 2007;176:1113-1120 Google Scholar

  • [16] Hansel B, Giral P, Nobecourt E, et al. Metabolic syndrome is associated with elevated oxidative stress and dysfunctional dense high-density lipoprotein particles displaying impaired antioxidative activity. J Clin Endocrinol Metab. 2004;89:4963-4971 CrossrefGoogle Scholar

  • [17] Bai H, Liu BW, Deng ZY, Shen T, Fang DZ, Zhao YH, Liu Y. Plasma very-low-density lipoprotein, low-density lipoprotein, and high-density lipoprotein oxidative modification induces procoagulant profiles in endogenous hypertriglyceridemia. Free Radic Biol Med. 2006;40:1796-803 Google Scholar

  • [18] Kolovou GD, Mikhailidis DP, Kovar J, Lairon D, Nordestgaard BG, Ooi TC, Perez-Martinez P, Bilianou H, Anagnostopoulou K, Panotopoulos G. Assessment and clinical relevance of non-fasting and postprandial triglycerides: an expert panel statement. Curr Vasc Pharmacol. 2011;9:258-270 CrossrefGoogle Scholar

  • [19] Nordestgaard BG, Freiberg JJ. Clinical relevance of non-fasting and postprandial hypertriglyceridemia and remnant cholesterol.CurrVascPharmacol. 2011;9:281-6 Google Scholar

  • [20] Salazar MR, Carbajal HA, Espeche WG, LeivaSisnieguez CE, Balbín E, Dulbecco CA, Aizpurúa M, Marillet AG, Reaven GM. Relation among the plasma triglyceride/high-density lipoprotein cholesterol concentration ratio, insulin resistance, and associated cardio-metabolic risk factors in men and women. Am J Cardiol. 2012;109:1749-53 CrossrefWeb of ScienceGoogle Scholar

  • [21] Grundy SM; National Cholesterol Education Program (NCEP)-The National Cholesterol Guidelines in 2001, Adult Treatment Panel (ATP) III. Approach to lipoprotein management in 2001 National Cholesterol Guidelines. Am J Cardiol. 2002; 90:11i-21i Google Scholar

  • [22] Fruchart JC, Duriez P. Mode of action of fibrates in the regulation of triglyceride and HDL-cholesterol metabolism. Drugs Today. 2006;42:39-64. Google Scholar

  • [23] Stone NJ, Saxon D. Approach to treatment of the patient with metabolic syndrome: lifestyle therapy.Am J Cardiol. 2005;96:15E-21E CrossrefGoogle Scholar

  • [24] Goodson BL, Wung SF, Archbold KH. Obstructive sleep apnea hypopnea syndrome and metabolic syndrome: A synergistic cardiovascular risk factor. J Am Acad Nurse Pract. 2012;24:695-703 Web of ScienceCrossrefGoogle Scholar

  • [25] Walldius G, Aastveit AH, Jungner I. Stroke mortality and the apoB/apoA-I ratio: results of the AMORIS prospective study. J Intern Med. 2006;259:259-66 CrossrefGoogle Scholar

  • [26] Jungner I, Sniderman AD, Furberg C, Aastveit AH, Holme I, Walldius G. Does low-density lipoprotein size add to atherogenic particle number in predicting the risk of fatal myocardial infarction? Am J Cardiol. 2006;97:943-6 CrossrefGoogle Scholar

  • [27] Contois JH, Warnick GR, Sniderman AD. Reliability of low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B measurement. J Clin Lipidol. 2011;5:264-72 CrossrefWeb of ScienceGoogle Scholar

  • [28] Walldius G. Apolipoprotein B (apoB) more closely related to subclinical atherosclerosis than non-HDL cholesterol and LDL cholesterol. J Intern Med. 2010;268:549-51 Web of ScienceGoogle Scholar

  • [29] Sniderman AD, Williams K, Contois JH, Monroe HM, McQueen MJ, de Graaf J, Furberg CD. A meta-analysis of low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B as markers of cardiovascular risk.CircCardiovascQual Outcomes. 2011;4:337-452 Google Scholar

  • [30] Sundvall J, Leiviskä J, Laatikainen T, Peltonen M, Salomaa V, Vanhala M, Korpi-Hyövälti E, Lauronen J, Alfthan G. The use of fasting vs. non-fasting triglyceride concentration for estimating the prevalence of high LDL-cholesterol and metabolicsyndrome in population surveys. BMC Med Res Methodol. 2011;11:63 CrossrefGoogle Scholar

  • [31] Lund SS, Petersen M, Frandsen M, Smidt UM, Parving HH, Vaag AA, Jensen T.Agreement between fasting and postprandialLDLcholesterolmeasured with 3methods in patients with type2diabetesmellitus. Clin Chem. 2011;57:298-308 Google Scholar

  • [32] Liskum L. Cholesterol biosynthesis. New Comprehensive Biochemistry. 2002;36: 409-432 Google Scholar

  • [33] Ruge T, Sukonina V, Kroupa O, Makoveichuk E, Lundgren M, Svensson MK, Olivecrona G, Eriksson JW. Effects of hyperinsulinemia on lipoprotein lipase, angiopoietin-like protein 4, and glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 in subjects with and without type 2 diabetes mellitus. Metabolism. 2012;61:652-60 CrossrefGoogle Scholar

  • [34] Zélie J, Fournier N, Bellanger N, Chapman MJ, Goff WL, Guerin M. Postprandial lipemiaenhances the capacity of large HDL2 particles to mediate free cholesterol efflux via SR-BI and ABCG1 pathways in type IIB hyperlipidemia. J Lipid Res. 2010;51:3350-3358 Google Scholar

  • [35] Isomaa B, Almgren P, Tuomi T, Forsén B, Lahti K, Nissén M, Taskinen MR. Cardiovascular Morbidity and Mortality Associated With the Metabolic Syndrome. Diabetes Care. 2001; 24:683–689. CrossrefGoogle Scholar

  • [36] Virani SS, Wang D, Woodard LD, Chitwod SS, Landrum CR, Zieve FJ, Ballantyne CM, Petersen LA. Non–high-density lipoprotein cholesterol reporting and goal attainment in primary care. J Clin Lipidol. 2012;6:545-552 CrossrefWeb of ScienceGoogle Scholar

  • [37] Stancliffe RA, Thorpe T, Zemel MB. Dairy attentuates oxidative and inflammatory stress in metabolic syndrome. Am J ClinNutr. 2011;94:422-430 Google Scholar

  • [38] Pravenec M, Kajiya T, Zídek V, Landa V, Mlejnek P, Simáková M, Silhavý J, Malínská H, Oliyarnyk O, Kazdová L, Fan J, Wang J, Kurtz TW. Effects of human C-reactive protein on pathogenesis of features of the metabolic syndrome. Hypertension. 2011;57:731-737 Web of ScienceCrossrefGoogle Scholar

  • [39] Mazloom Z, Hejazi N, Dabbaghmanesh MH, Tabatabaei HR, Ahmadi A, Ansar H. Effect of vitamin C supplementation on postprandial oxidative stress and lipid profile in type 2 diabeticpatients. Pak J Biol Sci. 2011;14:900-904 Google Scholar

  • [40] Spiteller G.The relation of lipid peroxidation processes with atherogenesis: a new theory on atherogenesis. Mol Nutr Food Res. 2005;49:999-1013 CrossrefGoogle Scholar

About the article

Received: 2013-10-20

Accepted: 2014-03-31

Published Online: 2015-02-03


Citation Information: Open Medicine, Volume 10, Issue 1, ISSN (Online) 2391-5463, DOI: https://doi.org/10.1515/med-2015-0025.

Export Citation

© 2015 A. Skoczyńska et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Nisha Panth, Cintia B. Dias, Katie Wynne, Harjinder Singh, and Manohar L. Garg
Clinical Nutrition, 2019

Comments (0)

Please log in or register to comment.
Log in