Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Medicine

formerly Central European Journal of Medicine

Editor-in-Chief: Darzynkiewicz, Zbigniew

1 Issue per year

IMPACT FACTOR 2017: 0.484
5-year IMPACT FACTOR: 0.484

CiteScore 2017: 0.53

SCImago Journal Rank (SJR) 2017: 0.154
Source Normalized Impact per Paper (SNIP) 2017: 0.264

Open Access
See all formats and pricing
More options …
Volume 10, Issue 1


Volume 10 (2015)

The latent cytomegalovirus decreases telomere length by microcompetition

Hanan Polansky / Adrian Javaherian
Published Online: 2015-05-27 | DOI: https://doi.org/10.1515/med-2015-0042


Reduced telomere length has been associated with aging and age-related diseases. Latent infection with the Cytomegalovirus (CMV) induces telomere shortening in the infected cells. Latent CMV infection may cause reduced telomere length via GABP transcription factor deficiency, according to the Microcompetition Theory. Microcompetition and viral-induced transcription factor deficiency is important since most people harbor a latent viral infection.

Keywords: Latent virus; microcompetition; transcription factor; telomere


  • [1] Drury S.S., Theall K., Gleason M.M., Smyke A.T., De Vivo I., Wong J.Y.Y. et al., Telomere length and early severe social deprivation: linking early adversity and cellular aging, Mol. Psychiatry, 2012, 17(7), 719-727 CrossrefGoogle Scholar

  • [2] van de Berg P.J., Griffiths S.J., Yong S.L., Macaulay R., Bemelman F.J., Jackson S. et al., Cytomegalovirus Infection Reduces Telomere Length of the Circulating T Cell Pool, J. Immunol. 2010, 184, 3417-3423 Web of ScienceGoogle Scholar

  • [3] Polansky H., Microcompetition with Foreign DNA and the Origin of Chronic Disease., The Center for the Biology of Chronic Disease, New York, 2003 Google Scholar

  • [4] Liu B.H., Wang X., Ma Y.X., Wang S., CMV Enhancer/Human PDGF-Beta Promoter for Neuron-Specific Transgene Expression, Gene Ther., 2004, 11(1), 52-60 CrossrefGoogle Scholar

  • [5] Slobedman B., Mocarski E.S., Quantitative Analysis of Latent Human Cytomegalovirus, J. Virol., 1999, 73(6), 4806-4812 Google Scholar

  • [6] Adam G.I., Miller S.J., Ulleras E., Franklin G.C., Cell-Type- Specific Modulation of PDGF-B Regulatory Elements via Viral Enhancer Competition: A Caveat for the Use of Reference Plasmids in Transient Transfection Assays, Gene, 1996, 178(1), 25-29 Google Scholar

  • [7] Yu S., Cui K., Jothi R., Zhao D.M., Jing X., Zhao K. et al., GABP controls a critical transcription regulatory module that is essential for maintenance and differentiation of hematopoietic stem/progenitor cells, Blood, 2011, 117(7), 2166-2178 Web of ScienceGoogle Scholar

  • [8] Sarek G., Vannier J.B., Panier S., Petrini J.H.J., Boulton S.J., TRF2 Recruits RTEL1 to Telomeres in S Phase to Promote T-Loop Unwinding, Molecular Cell, 2015, 57(4), 622-635 CrossrefGoogle Scholar

  • [9] Spyridopoulos I., Hoffmann J., Aicher A., Brummendorf T.H., Doerr H.W., Zeiher A.M. et al., Accelerated Telomere Shortening in Leukocyte Subpopulations of Patients With Coronary Heart Disease, Circulation, 2009, 120, 1364-1372 Web of ScienceGoogle Scholar

  • [10] Nan W.Q., Ling Z., Bing C., The influence of the telomeretelomerase system on diabetes mellitus and its vascular complications, Expert Opin. Ther. Targets., 2015, 19(6) Google Scholar

  • [11] Ji Y.N., An L., Zhan P., Chen X.H., Cytomegalovirus infection and coronary heart disease risk: a meta-analysis, Molecular Biology Reports, 2012, 39(6), 6537-6546 Web of ScienceCrossrefGoogle Scholar

  • [12] Mendy A., Gasana J., Vieira E.R., Diallo H., Prospective study of cytomegalovirus seropositivity and risk of mortality from diabetes, Acta Diabetol., 2014, 51, 723-729 Web of ScienceGoogle Scholar

  • [13] Green M., Michaels M.G., Epstein-Barr Virus Infection and Posttransplant Lymphoproliferative Disorder, Am. J. Transplant., 2013, 13(s3), 41-54 CrossrefWeb of ScienceGoogle Scholar

  • [14] Reddehase M.J., Cytomegaloviruses: From Molecular Pathogenesis to Intervention. Volume 2, Horizon Scientific Press, United Kingdom, 2013 Google Scholar

  • [15] Bernstein D.I., Bellamy A.R., Hook III E.W., Levin M.J., Wald A., Ewell M.G. et al., Epidemiology, Clinical Presentation, and Antibody Response to Primary Infection With Herpes Simplex Virus Type 1 and Type 2 in Young Women, Clin. Infect. Dis., 2013, 56(3), 344-351 CrossrefGoogle Scholar

About the article

Received: 2015-04-26

Accepted: 2015-04-30

Published Online: 2015-05-27

Citation Information: Open Medicine, Volume 10, Issue 1, ISSN (Online) 2391-5463, DOI: https://doi.org/10.1515/med-2015-0042.

Export Citation

© 2015 Hanan Polansky, Adrian Javaherian. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in