[1]
El-Serag H.B., Rudolph K.L. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007; 132: 2557-2576 Web of SciencePubMedCrossrefGoogle Scholar
[2]
Forner A, Llovet J.M., Bruix J. Hepatocellular carcinoma. Lancet 2012; 379: 1245-1255 PubMedCrossrefGoogle Scholar
[3]
Ma C, Kesarwala A.H., Eggert T, Medina-Echeverz J, Kleiner D.E., Jin P, et al. NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature 2016; 531: 253-257 PubMedWeb of ScienceCrossrefGoogle Scholar
[4]
Endig J, Buitrago-Molina L.E., Marhenke S, Reisinger F, Saborowski A, Schutt J, et al. Dual Role of the Adaptive Immune System in Liver Injury and Hepatocellular Carcinoma Development. Cancer cell 2016; 30: 308-323 Web of SciencePubMedCrossrefGoogle Scholar
[5]
Melegari M, Scaglioni P.P., Wands J.R. Cloning and characterization of a novel hepatitis B virus x binding protein that inhibits viral replication. J Virol. 1998; 72: 1737-1743 PubMedGoogle Scholar
[6]
Bar-Peled L, Schweitzer L.D., Zoncu R, Sabatini D.M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 2012; 150: 1196-1208 PubMedCrossrefGoogle Scholar
[7]
Fujii R, Zhu C, Wen Y, Marusawa H, Bailly-Maitre B, Matsuzawa S, et al. HBXIP, cellular target of hepatitis B virus oncoprotein, is a regulator of centrosome dynamics and cytokinesis. Cancer Res. 2006; 66: 9099-9107 PubMedCrossrefGoogle Scholar
[8]
Krepela E, Dankova P, Moravcikova E, Krepelova A, Prochazka J, Cermak J, et al. Increased expression of inhibitor of apoptosis proteins, survivin and XIAP, in non-small cell lung carcinoma. Int J Oncol. 2009; 35: 1449-1462 PubMedWeb of ScienceGoogle Scholar
[9]
Hu N, Zhang J, Cui W, Kong G, Zhang S, Yue L, et al. miR-520b regulates migration of breast cancer cells by targeting hepatitis B X-interacting protein and interleukin-8. J Biol Chem. 2011; 286: 13714-13722 Web of SciencePubMedCrossrefGoogle Scholar
[10]
Wang F, Fei H, Qi B, Yao S, Chang Z. Overexpression of hepatitis B x-interacting protein in HepG2 cells enhances tumor-induced angiogenesis. Mol Cell Biochem. 2012; 364: 165-171 CrossrefPubMedWeb of ScienceGoogle Scholar
[11]
Zhang H, Xu F, Xie T, Jin H, Shi L. β-elemene induces glioma cell apoptosis by downregulating survivin and its interaction with hepatitis B X-interacting protein. Oncol Rep. 2012; 28: 2083-2090 PubMedCrossrefWeb of ScienceGoogle Scholar
[12]
Liu F, You X, Wang Y, Liu Q, Liu Y, Zhang S, et al. The oncoprotein HBXIP enhances angiogenesis and growth of breast cancer through modulating FGF8 and VEGF. Carcinogenesis 2014; 35: 1144-1153 PubMedWeb of ScienceCrossrefGoogle Scholar
[13]
Xu F, Zhu X, Han T, You X, Liu F, Ye L, et al. The oncoprotein hepatitis B X-interacting protein promotes the migration of ovarian cancer cells through the upregulation of S-phase kinase-associated protein 2 by Sp1. Int J Oncol. 2014; 45: 255-263 PubMedCrossrefWeb of ScienceGoogle Scholar
[14]
Cheng D, Liang B, Li Y. HBXIP expression predicts patient prognosis in breast cancer. Med Oncol. 2014; 31: 210 CrossrefWeb of SciencePubMedGoogle Scholar
[15]
Li X, Liu S. Suppression of HBXIP Reduces Cell Proliferation, Migration and Invasion In Vitro, and Tumorigenesis In Vivo in Human Urothelial Carcinoma of the Bladder. Cancer Biother Radiopharm. 2016; 31: 311-316 PubMedCrossrefWeb of ScienceGoogle Scholar
[16]
Piao J.J., Li N, Wang Y.X., Lin Z.H., Liu S.P. HBXIP expression in gastric adenocarcinoma predicts poor prognosis. Zhonghua bing li xue za zhi = Chinese journal of pathology 2017; 46: 88-92 PubMedGoogle Scholar
[17]
Liu S, Li L, Zhang Y, Zhang Y, Zhao Y, You X, et al. The oncoprotein HBXIP uses two pathways to up-regulate S100A4 in promotion of growth and migration of breast cancer cells. J Biol Chem. 2012; 287: 30228-30239 PubMedCrossrefWeb of ScienceGoogle Scholar
[18]
Shi H, Li Y, Feng G, Li L, Fang R, Wang Z, et al. The oncoprotein HBXIP up-regulates FGF4 through activating transcriptional factor Sp1 to promote the migration of breast cancer cells. Biochem Biophys Res Commun. 2016; 471: 89-94 Web of ScienceCrossrefPubMedGoogle Scholar
[19]
Liu F, Zhang W, You X, Liu Y, Li Y, Wang Z, et al. The oncoprotein HBXIP promotes glucose metabolism reprogramming via downregulating SCO2 and PDHA1 in breast cancer. Oncotarget 2015; 6: 27199-27213 Web of SciencePubMedGoogle Scholar
[20]
Liu J, Zhang C, Wu R, Lin M, Liang Y, Liu J, et al. RRAD inhibits the Warburg effect through negative regulation of the NF-kappaB signaling. Oncotarget 2015; 6: 14982-14992 PubMedGoogle Scholar
[21]
Martinez-Outschoorn UE, Peiris-Pages M, Pestell R.G., Sotgia F, Lisanti M.P. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol 2017; 14: 113 Web of ScienceCrossrefPubMedGoogle Scholar
[22]
Poyton R.O., Ball K.A., Castello P.R. Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab. 2009; 20: 332-340 Web of SciencePubMedCrossrefGoogle Scholar
[23]
Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 2013; 34: 121-138 CrossrefPubMedWeb of ScienceGoogle Scholar
[24]
Airley R.E., Mobasheri A. Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: novel pathways and targets for anticancer therapeutics. Chemotherapy 2007; 53: 233-256 CrossrefWeb of SciencePubMedGoogle Scholar
[25]
Medina R.A., Owen G.I. Glucose transporters: expression, regulation and cancer. Biol Res 2002; 35: 9-26 PubMedGoogle Scholar
[26]
Rothwell P.M., Wilson M, Price J.F., Belch J.F., Meade T.W., Mehta Z. Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet 2012; 379: 1591-1601 Web of ScienceCrossrefPubMedGoogle Scholar
[27]
Huang Q, Li J, Xing J, Li W, Li H, Ke X, et al. CD147 promotes reprogramming of glucose metabolism and cell proliferation in HCC cells by inhibiting the p53-dependent signaling pathway. J Hepatol. 2014; 61: 859-866 Web of ScienceCrossrefPubMedGoogle Scholar
[28]
Zhao Y, Li H, Zhang Y, Li L, Fang R, Li Y, et al. Oncoprotein HBXIP Modulates Abnormal Lipid Metabolism and Growth of Breast Cancer Cells by Activating the LXRs/SREBP-1c/FAS Signaling Cascade. Cancer Res. 2016; 76: 4696-4707 Web of ScienceCrossrefPubMedGoogle Scholar
[29]
Xu F, You X, Liu F, Shen X, Yao Y, Ye L, et al. The oncoprotein HBXIP up-regulates Skp2 via activating transcription factor E2F1 to promote proliferation of breast cancer cells. Cancer Lett. 2013; 333: 124-132 PubMedWeb of ScienceCrossrefGoogle Scholar
[30]
Liu Y.X., Feng J.Y., Sun M.M., Liu B.W., Yang G, Bu Y.N., et al. Aspirin inhibits the proliferation of hepatoma cells through controlling GLUT1-mediated glucose metabolism. Acta Pharmacol Sin. 2019; 40:122-132 CrossrefWeb of SciencePubMedGoogle Scholar
[31]
Wang F.Z., Sha L, Zhang W.Y., Wu L.Y., Qiao L, Li N, et al. Involvement of hepatitis B X-interacting protein (HBXIP) in proliferation regulation of cells. Acta Pharmacol Sin. 2007; 28: 431-438 PubMedCrossrefWeb of ScienceGoogle Scholar
Comments (0)