Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Mesoporous Biomaterials

Editor-in-Chief: Canham, Leigh

Ed. by Santos, Hélder

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2300-2271
See all formats and pricing
More options …

Oxidized porous silicon as a non-interfering support for luminescent dyes

G. Santamaría-Juárez
  • Corresponding author
  • CIDS-IC, Benemérita Universidad Autónoma de Puebla (BUAP). PO Box 196, 72000 Puebla, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ E. Gómez-Barojas
  • Corresponding author
  • CIDS-IC, Benemérita Universidad Autónoma de Puebla (BUAP). PO Box 196, 72000 Puebla, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ E. Quiroga-González / E. Sánchez-Mora / J. A. Luna-López
  • Corresponding author
  • CIDS-IC, Benemérita Universidad Autónoma de Puebla (BUAP). PO Box 196, 72000 Puebla, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-12-23 | DOI: https://doi.org/10.1515/mesbi-2016-0008

Abstract

The objective of this work is to elucidate the possibility to passivate the surface states of porous Si (PSi) by thermal oxidation to be used as a passive host matrix. It is known that a large contribution to the Photoluminescence (PL) of PSi comes from defects at the surface. This PL could overlap the PL of guest materials making it difficult to identify the details of the PL spectrum of the guest. We report on an experimental study about the effect of thermal oxidation at low temperature on the PL of PSi and on the functionalization of oxidized PSi with fluorescein. The background PL is minimized allowing a better detection of fluorescein molecules adsorbed on oxidized PSi.

Keywords: Porous silicon; support for dyes; photoluminescence; silanization; fluorescein

References

  • [1] L. T. Canham. Appl. Phys Lett. 57, 10, 1990, 1046-1048. CrossrefGoogle Scholar

  • [2] S. Takeoka, M. Fujii and S. Hayashi. Phys. Rev. B. 62, 24, 2000, 16820-16824. CrossrefGoogle Scholar

  • [3] A. Chouket, H. Elhouichet, H. Koyama, B. Gelloz, N. Koshida. Thin Solid Films, 518, 2010, 212-216. Google Scholar

  • [4] S. H. Chung, G.S. Shin, Solid State Communications, 95, 6, 1995, 341-345. Google Scholar

  • [5] Y. Kanemitsu, T. Ogawa, K. Shiraishi, and K. Takeda. Phys. Rev. B. 48, 7, 1993, 4883-4886. CrossrefGoogle Scholar

  • [6] W. Shi, M. Wei, D. G. Evans and X. Duan. J. Mater. Chem. 20, 2010, 390-3909. CrossrefGoogle Scholar

  • [7] M. J. Sailor. Porous Silicon in Practice: Preparation, characterization and Applications. Wiley-VCH Verlag GmbH & Co. kGaA. Google Scholar

  • [8] L. Pavesi. Revista del Nuovo Cimento. 20, 10, 1997, 1-76. Google Scholar

  • [9] Bruggeman, D. A. G. Ann. Phys. (Leipzig) 24-1935-636. CrossrefGoogle Scholar

  • [10] A. E. Pap, K. Kordás, J. Vähäkangas, A. Uusimäki, S. Leppävuori, L. Pilon, S. Szatmári. J. Optical Materials. 28, 2006, 506-513. CrossrefGoogle Scholar

  • [11] A. G. Cullis, L. T. Canham and P. D. Calcott. J. Appl. Phys. 82, 3, 1997, 909-965. CrossrefGoogle Scholar

  • [12] Ghenadii Korotcenkov. Porous Silicon from Formation to Application. Formation and Properties, Vol. 1. CRC Press 2016. Google Scholar

  • [13] P. Jalkanen, S. Kulju, K. Arutyunov, L. Antila, P. Myllyperkiö, T. Ihalainen, T. Kääriäinen, M. L. Kääriäinen, and J. Korppi- Tommola. Thin Solid Films. 519, 2011, 3835-3839. Google Scholar

  • [14] M. A. Tischler, R. T. Collins, J H. Stathis, and J. C. Tsang. Appl. Phys. Lett. 60, 1992, 639-641. CrossrefGoogle Scholar

About the article

Received: 2016-09-14

Accepted: 2016-11-11

Published Online: 2016-12-23


Citation Information: Mesoporous Biomaterials, ISSN (Online) 2300-2271, DOI: https://doi.org/10.1515/mesbi-2016-0008.

Export Citation

© 2016 G. Santamaría-Juárez et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in