Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Main Group Metal Chemistry

Editor-in-Chief: Jurkschat, Klaus

Editorial Board: Atwood, David / Basu Baul, Tushar S. / Beckmann, Jens / Chandrasekhar, Vadepalli / Izod, Keith / Jones, Cameron / Karlov, Sergey S. / Mehring, Michael / Molloy, Kieran / Naseer, Muhammad Moazzam / Ramasami, Ponnadurai / Ruhlandt-Senge, Karin / Ruzicka, Ales / Saito, Masaichi / Sarazin, Yann / Tokitoh, Norihiro / Wagler, Jörg

6 Issues per year

IMPACT FACTOR 2017: 0.612

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.236
Source Normalized Impact per Paper (SNIP) 2017: 0.320

See all formats and pricing
More options …
Volume 36, Issue 3-4


Synthesis, spectral, antimicrobial, and antifertility studies of tetraaza macrocyclic complexes of tin(II)

Nidhi Bansal
  • Corresponding author
  • Mahatma Gandhi Institute of Applied Science, Department of Chemistry, JECRC Campus, Sitapura, Tonk Road, Jaipur 302022, Rajasthan, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Saurabh Dave
  • Mahatma Gandhi Institute of Applied Science, Department of Chemistry, JECRC Campus, Sitapura, Tonk Road, Jaipur 302022, Rajasthan, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-04-22 | DOI: https://doi.org/10.1515/mgmc-2012-0074


A novel family of tetraazamacrocyclic complexes of Sn(II) has been synthesized by template condensation using 1,9-diaminononane with different dicarboxylic acids (malonic, succinic, glutaric, and adipic). The complexes were characterized by elemental analysis, conductivity measurements, molecular weight determinations, infrared (IR), proton nuclear magnetic resonance (1H NMR), carbon nuclear magnetic resonance (13C NMR), and tin nuclear magnetic resonance (119Sn NMR) spectral studies. The compounds were found to be monomeric in nature, having an octahedral geometry. The in vitro antibacterial activity of macrocyclic complexes against Escherichia coli and Staphylococcus aureus were tested to assess their inhibiting activities. The antifungal activity of starting materials and their metal complexes were studied by screening the compounds against Fusarium oxysporum and Aspergillus niger. The testicular sperm density, sperm morphology, sperm motility, density of cauda epididymis, spermatozoa, and fertility in mating trials and the biochemical parameters of the reproductive organs of the rats were examined and are discussed.

Keywords: antibacterial activity; macrocyclic complexes; monomeric; octahedral geometry


  • Akbarsha, M. A.; Manivanon, B.; Hamid, K. S.; Vijayan, B. Antifertility effect of Andrographis paniculata (Nees) in male albino rats. Indian J. Exp. Biol. 1990, 28, 421.Google Scholar

  • Al Obaidi, O. H. S.; Al Hiti, A. R. H. Synthesis, spectral and theoretical studies of macrocyclic Cu (II), Ni(II) and Co(II) complexes by template reaction of malonic acid with metal (II) chloride and urea or thiourea. Am. Chem. Sci. J. 2012, 2, 1–11.CrossrefGoogle Scholar

  • Anastasi, D.; Curtis, N. F.; Gladrish, O. P.; Goode, I. J. C.; Weatheroutch, D. C. Copper (II) compounds of 5-alkyl-3,5,7-triazanonane-1,9-diamines and 3,10-bisalkyl-1,3,5,8,10,12-hexaaza-cyclotetradecanes; the structure of 1R,5S,8R,12S-[3,10-Bis(2-hydroxy propyl)-1,3,5,8,10,12-hexaaza-cyclotetradecane-N1, N5, N8, N12] copper (II) perchlorate. Aust. J. Chem. 1998, 51, 673–680.Google Scholar

  • Arockiadoss, P. V.; Amaladason, D. M. Synthesis and characterization of tetradentate N8macrocyclic ligand and its complexes. Int. J. Chem. Tech. Res. 2012, 4, 324–327.Google Scholar

  • Bansal, N.; Bansal, A.; Singh, R. V. Synthesis, spectroscopic characterization and antimicrobial properties of 18-24 membered tetraazamacrocyclic complexes of Mn(II), Fe(II), and Sn(II). Int. J. Chem. Sci. 2004, 2, 385–390.Google Scholar

  • Bedwal, R. S.; Edwards, M. S.; Katoch, M. P.; Bahunguna, A.; Dewan, R. Histological and biochemical changes in testis of zinc deficient BAL B/C strain of mice. Indian J. Exp. Biol. 1994, 32, 243–247.Google Scholar

  • Chaudhary, A.; Singh, R. V. Synthetic, spectroscopic and toxicological aspects of newly designed tetra azamacrocyclic complexes of copper(II). Ras. J. Chem. 2008, 1, 15–21.Google Scholar

  • Chaudhary, A.; Jaroli, D. P.; Singh, R. V. Antimicrobial, antiinflammatory and antifertility approach to tetradentate macrocyclic complexes of iron (II) and manganese (II). Metal Based Drugs 2002, 8, 347–353.PubMedGoogle Scholar

  • Chitra, K. C.; Latchoumy, C.; Mathur, P. P. Effect of bisphenol A and co-administration of bisphenol A and vitamin C on epididymis of adult rats: a histological and biochemical study. Asian J. Androl. 2001, 1, 203–208.Google Scholar

  • Choi, K. U.; Ryu, H.; Suh, I. H. Axial additions in nickel (II) complexes of 3,14-dimethyl-2,6,13,17-tetraaza-tricyclo[14,4,O1.18,O7.12] docosane: synthesis and crystal structures of the octahedral nickel(II) complexes. Polyhedron 1998, 17, 1241–1246.CrossrefGoogle Scholar

  • Colthup, N. B.; Dally, L. H.; Wiberley, S. E. Introduction to Infrared and Raman Spectroscopy; Academic: New York, 1964.Google Scholar

  • Hay, R. W.; Fraser, I. The preparation and kinetics of aquation of diastereoisomeric complexes of trans-[Cr(Me8[14]aneN4)Cl2]+ (Me8[14]aneN4=3,5,7,7,10,12,14,14-octamethyl-1,4,8,11tetracyclotetradecane). Polyhedron 1998, 17, 1931–1936.CrossrefGoogle Scholar

  • Herlinger, A. W.; Funk, E. M.; Chorak, R. F.; Siebert, J. W.; Roco, E. Preparation of lithium and sodium complexes of 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane, Me4[14]aneN4. Polyhedron 1994, 13, 69–75.CrossrefGoogle Scholar

  • Kumar, G.; Devi, S.; Johari, R. Synthesis and spectral characterization of Schiff base Cr (III),Mn (III),and Fe (III) novel macrocyclic complexes derived from thiocarbohydrazide and dicarbonyl compound. E-J. Chem. 2012, 9, 2255–2260.Google Scholar

  • Melson, G. A. Coordination Chemistry of Macrocyclic Compounds. Plenum Press: New York, 1979.Google Scholar

  • Naqvi, S. M.; Vaishnavi, C. Bioaccumulative potential and toxicity of endosulfan insecticide to non target animals. Comp. Biol. Chem. Physiol. 1993, 105, 347–361.Google Scholar

  • Pawar, V.; Joshi, S.; Uma, V. Synthesis, antioxidant and biocidal features of macrocyclic Schiff bases with oxovanadium (V) complexes. J. Chem. Pharma. Res. 2011, 3, 169–175.Google Scholar

  • Raman, N.; Joseph, J.; Sakthivel, A.; Jeyamurugan, R. Synthesis, structural characterization and antimicrobial studies of novel Schiff base copper(II) complexes. J. Chil. Chem. Soc. 2009, 54, 354–357.Google Scholar

  • Ranjan, R.; Lewak, S. Interaction of jasmonic acid and abscisic acid in the control of Lipases and proteases in germinating apple embryos. Physiol. Plant. 1995, 93, 42.Google Scholar

  • Sembdner, G.; Parthier, B. The biochemistry and the physiological and molecular action of jasmonates. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1993, 44, 569.CrossrefGoogle Scholar

  • Shakir, M.; Varshney, S. P. A new synthetic route for the preparation of a new series of 14-22 membered tetraoxomacrocyclic tetraamines and their transition metal complexes. Polyhedron 1995, 14, 1117.CrossrefGoogle Scholar

  • Sharma, R. P.; Singh, R.; Pawar, S.; Chauhan, A. Studies of transition metal complexes and their antibacterial activities. J. Am. Sci. 2010, 6, 559–564.Google Scholar

  • Sharma, K., Agarwal, S.; Gupta, S. Antifungal, antibacterial and antifertility activities of biologically active macrocyclic complexes of tin(II). Int. J. Chem. Tech. Res. 2013, 5, 456–463.Google Scholar

  • Singh, D.; Kumar, K. Macrocyclic complexes: synthesis and characterization. J. Serb. Chem. Soc. 2010, 75, 475–482.CrossrefGoogle Scholar

  • Tsai, F. Y.; Rao, C. H. Methyl jasmonate inhibits endosperm reserve mobilization in germinating rice seeds. Physiol. Mol. Biol. Plants 1996, 2, 67.Google Scholar

  • Vogel, A. I. A Text Book of Practical Organic Chemistry; 4th Edition; Zongmans, ELBS: London, 1978, p. 232.Google Scholar

  • Vogel, A. I. A Text Book of Quantitative Inorganic Analysis; Longmans Green, ELBS: London, 1991, p. 302.Google Scholar

  • Winter, C. A.; Risley, E. A.; Nuss, G. W. Carrageenan-induced edema in hind paw of the rat as an assay for anti-inflammatory drugs. Proc. Soc. Exp. Biol. Med. 1963, 162, 544–547.Google Scholar

  • Woon, T. C.; Fairlie, D. P. Amide complexes of (diethylenetriamine) platinum(II). Inorg. Chem. 1992, 31, 4069–4074.CrossrefGoogle Scholar

About the article

Corresponding author: Nidhi Bansal, Mahatma Gandhi Institute of Applied Science, Department of Chemistry, JECRC Campus, Sitapura, Tonk Road, Jaipur 302022, Rajasthan, India

Received: 2013-01-03

Accepted: 2013-03-10

Published Online: 2013-04-22

Published in Print: 2013-07-01

Citation Information: Main Group Metal Chemistry, Volume 36, Issue 3-4, Pages 101–107, ISSN (Online) 2191-0219, ISSN (Print) 0792-1241, DOI: https://doi.org/10.1515/mgmc-2012-0074.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in