Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Main Group Metal Chemistry

Editor-in-Chief: Jurkschat, Klaus

Editorial Board: Atwood, David / Basu Baul, Tushar S. / Beckmann, Jens / Chandrasekhar, Vadepalli / Izod, Keith / Jones, Cameron / Karlov, Sergey S. / Mehring, Michael / Molloy, Kieran / Naseer, Muhammad Moazzam / Ramasami, Ponnadurai / Ruhlandt-Senge, Karin / Ruzicka, Ales / Saito, Masaichi / Sarazin, Yann / Tokitoh, Norihiro / Wagler, Jörg

6 Issues per year


IMPACT FACTOR 2017: 0.612

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.236
Source Normalized Impact per Paper (SNIP) 2017: 0.320

Online
ISSN
2191-0219
See all formats and pricing
More options …
Volume 36, Issue 3-4

Issues

The 2,8-dioxa-5-aza-1-sila-bicyclo[3.3.01.5]octane PhN(CH2CH2O)2SiH2 as reducing reagent: synthesis and molecular structure of PhN(CH2CH2O)2Sn

Thomas Zöller
  • Lehrstuhl für Anorganische Chemie II der Technischen Universität Dortmund, D-44221 Dortmund, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael Lutter
  • Lehrstuhl für Anorganische Chemie II der Technischen Universität Dortmund, D-44221 Dortmund, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thorsten Berends
  • Lehrstuhl für Anorganische Chemie II der Technischen Universität Dortmund, D-44221 Dortmund, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Klaus Jurkschat
  • Corresponding author
  • Lehrstuhl für Anorganische Chemie II der Technischen Universität Dortmund, D-44221 Dortmund, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-04-04 | DOI: https://doi.org/10.1515/mgmc-2013-0008

Abstract

The synthesis of the 2,8-dioxa-5-aza-1-stanna-bicyclo[3.3.01.5]octane [PhN(CH2CH2O)2Sn]n (3) by a combined ligand exchange/redox reaction and independently by the reaction of tin(II)butoxide with N-phenyldiethanolamine is reported. Compound 3 was characterized by elemental analysis and single crystal X-ray diffraction analysis. In the solid state, it is a coordination polymer via intermolecular O→Sn interactions at O-Sn distances of 2.325 (3) and 2.379 (3) Å. The intramolecular N→Sn interactions at distances of 2.818 (3) and 3.096 (3) Å are rather weak.

Keywords: alkoxysilane; ethanolamine; stannabicyclooctane; tin alkoxide; X-ray crystallography

References

  • Amarego, W. L. F.; Chai, C. L. L. Purification of laboratory chemicals. 5th Edition. Butterworth-Heinemann: Oxford, 2003.Google Scholar

  • Aysin, R. R.; Leites, L. A.; Bukalov, S. S.; Khrustalev, V. M.; Borisova, I. V.; Zemlyansky, N. N.; Smirnov, A. Y.; Nechaev, M. S. Vibrational spectra and structural features of carbene analogs ElII(OCH2CH2NMe2)2 and ClElIIOCH2CH2NMe2 (ElII=Ge, Sn, Pb). Russ. Chem. Bull. 2011, 60, 69–80.Google Scholar

  • Berends, T.; Iovkova, L.; Bradtmöller, G.; Oppel, I.; Schürmann, M.; Jurkschat, K. LSn(OCH2CH2)2NR (L=lone pair, W(CO)5; R=Me, t-Bu). The molecular structures of 5-aza-2,8-dioxa-1-stannabicyclo[3.3.0]1.5octanes and their tungstenpentacarbonyl complexes. Z. Anorg. Allg. Chem. 2009, 635, 369–374.Web of ScienceGoogle Scholar

  • Berends, T.; Iovkova, L.; Tiekink, E. R. T.; Jurkschat, K. Bis{decacarbonylbis[[µ]-2,2’-(phenylimino)diethanolato]ditin(II)ditungsten(0)(2 Sn-W)} hexacarbonyltungsten(0). Acta Crystallogr., Sect. E: Struct. Rep. Online 2010, E66, m715–m716.Web of ScienceGoogle Scholar

  • Cea-Olivares, R.; García-Montalvo, V.; Moya-Cabrera, M. M. The importance of the transannular secondary bonding strength in the molecular structures of metallocanes of type [X(CH2CH2Y)2MRR′] and [X(CH2CH2Y)2M′R] (M=Ge(IV), Sn(IV), Pb(IV), M′=As(III), Sb(III) and Bi(III); X = NR″, O, S; Y=O, S). Coord. Chem. Rev. 2005, 249, 859–872.Google Scholar

  • Huang, M.; Kireenko, M. M.; Zaitsev, K. V.; Oprunenko, Y. F.; Churakov, A. V.; Howard, J. A. K.; Zabalov, M. V.; Lermontova, E. K.; Sundermeyer, J.; Linder, T.; et al. Stabilized germylenes based on dialkanolamines: synthesis, structure, chemical properties. J. Organomet. Chem. 2012, 706–707, 66–83.Web of ScienceGoogle Scholar

  • Iovkova-Berends, L.; Berends, T.; Dietz, C.; Bradtmöller, G.; Schollmeyer D.; Jurkschat, K. Syntheses, structures and reactivity of new intramolecularly coordinated tin alkoxides based on an enantiopure ephedrine derivative. Eur. J. Inorg. Chem. 2011, 24, 3632–3643.Web of ScienceGoogle Scholar

  • Iovkova-Berends, L.; Berends, T.; Zöller, T.; Bradtmöller, G.; Herres-Pawlis, S.; Jurkschat, K. Tin(II) and tin(IV) compounds with scorpion-shaped ligands – intramolecular N→Sn vs. intermolecular O→Sn coordination. Eur. J. Inorg. Chem. 2012a, 19, 3191–3199.CrossrefGoogle Scholar

  • Iovkova-Berends, L.; Berends, T.; Zöller, T.; Schollmeyer, D.; Bradtmöller, G.; Jurkschat, K. Trapping molecular SnBr2(OH)2 by tin alkoxide coordination: syntheses and molecular structures of [MeN(CH2CMe2O)2SnBr2]2·SnBr2(OH)2 and RN(CH2CMe2O)2SnL [R=Me, n-octyl; L=lone pair, Cr(CO)5, W(CO)5, Fe(CO)4, Br2]. Eur. J. Inorg. Chem. 2012b, 21, 3463–3473.CrossrefGoogle Scholar

  • Karlov, S. S.; Zaitseva, G. S., Germatranes and their analogs. Synthesis, structure, and reactivity. Chem. Heterocycl. Compd. 2001, 37, 1325–1357.Google Scholar

  • Kemmitt, T.; Hubert-Pfalzgraf, L. G.; Gainsford, G. J.; Richard, P. Cost efficient preparation of lead aminoalkoxides directly from lead(II) oxide. Inorg. Chem. Commun. 2005, 8, 1149–1153.Google Scholar

  • Krause, J.; Reiter, S.; Lindner, S.; Schmidt, A.; Jurkschat, K.; Schürmann, M.; Bradtmöller, G. Organotin catalysts for production of polyurethanes. DE 102008021980 A1, 2009.Google Scholar

  • Lutter, M.; Iovkova-Berends, L.; Dietz, C.; Jouikov, V.; Jurkschat, K. N-Aryl-substituted 5-aza-2,8-dioxasilabicyclo[3.3.01.5]octanes: syntheses, molecular structures, DFT calculations and cyclovoltammetric studies. Main Group Met. Chem. 2012, 35, 41–52.Google Scholar

  • Mantina, M.; Chamberlin, A. C.; Valero, R.; Cramer, C. J; Truhlar, D. G. Consistent van der Waals radii for the whole main group. J. Phys. Chem. A, 2009, 113, 5806–5812.Web of ScienceGoogle Scholar

  • Mengmeng, H.; Karlov, S.; Zabalov, M.; Zaitsev, K.; Lemenovskii, D.; Zaitseva, G. Structures of germylenes and stannylenes with chelating ligands: a DFT study. Russ. Chem. Bull. 2009, 58, 1576–1580.Web of ScienceGoogle Scholar

  • Poirier, V.; Roisnel, T.; Sinbandhit, S.; Bochmann, M.; Carpentier, J.-F.; Sarazin, Y. Synthetic and mechanistic aspects of the immortal ring-opening polymerization of lactide and trimethylene carbonate with new homo- and heteroleptic tin(II)-phenolate catalysts. Chem. Eur. J. 2012, 18, 2998–3013.Web of ScienceCrossrefGoogle Scholar

  • Puri, J. K.; Singh, R.; Chahal, V. K. Silatranes: a review on their synthesis, structure, reactivity and applications. Chem. Soc. Rev. 2011, 40, 1791–1840.Google Scholar

  • Selina, A. A.; Karlov, S. S.; Zaitseva, G. S. Metallocanes of group 14 elements. 1. Derivatives of silicon and germanium. Chem. Heterocycl. Compd. 2006, 42, 1518–1556.Google Scholar

  • Selina, A. A.; Karlov, S. S.; Lermontova, E. K.; Zaitseva, G. S. Metallocanes of group 14 elements 2. Derivatives of tin. Chem. Heterocycl. Compd. 2007, 43, 813–834.Google Scholar

  • Sheldrick, G. M. A short history of SHELX. Acta Crystallogr., Sect. A 2008, 64, 112–122.Web of ScienceGoogle Scholar

  • Singh, A.; Mehrotra, R. C. Novel heterometallic alkoxide coordination systems of polyols (glycols, di- and tri-ethanolamines) derived from the corresponding homometallic moieties. Coord. Chem. Rev. 2004, 248, 101–118.Google Scholar

  • Verkade, J. G. Main group atranes: chemical and structural features. Coord. Chem. Rev. 1994, 137, 233–295.Google Scholar

  • Voronkov, M. G.; Baryshok, V. P.; Petukhov, L. P.; Rakhlin, V. I.; Mirskov, R. G.; Pestunovich, A. 1-Halosilatranes. J. Organomet. Chem. 1988, 358, 39–55.Google Scholar

  • Zeldin, M.; Gsell, R. Synthesis of 5-aza-2,8-dioxa-1-stannocyclooctane and N-organo substituted derivatives. Syn. React. Inorg. Metal-Org. Chem. 1976, 6, 11–19.Google Scholar

  • Zemlyansky, N. N.; Borisova, I. V.; Kuznetsova, M. G.; Khrustalev, V. N.; Ustynyuk, Y. A.; Nechaev, M. S.; Lunin, V. V.; Barrau, J.; Rima, G. New stable germylenes, stannylenes, and related compounds. 1. Stable germanium(II) and tin(II) compounds M(OCH2CH2NMe2)2 (M=Ge, Sn) with intramolecular coordination metal–nitrogen bonds. Synthesis and Structure. Organometallics 2003, 22, 1675–1681.CrossrefGoogle Scholar

  • Zöller, T.; Iovkova-Berends, L.; Dietz, C.; Berends, T.; Jurkschat, K. On the reaction of elemental tin with alcohols: a straightforward approach to tin(II) and tin(IV) alkoxides and related tinoxo clusters. Chem. Eur. J. 2011, 17, 2361–2364.Web of ScienceGoogle Scholar

  • Zöller, T.; Dietz, C.; Iovkova-Berends, L.; Karsten, O.; Bradtmöller, G.; Wiegand, A.-K.; Wang, Y.; Jouikov, V.; Jurkschat K. Novel stannatranes of the type N(CH2CMe2O)3SnX (X=OR, SR, OC(O)R, SP(S)Ph2, halogen). Synthesis, molecular structures, and electrochemical properties. Inorg. Chem. 2012, 51, 1041–1056.Google Scholar

About the article

Corresponding author: Prof. Dr. Klaus Jurkschat, Lehrstuhl für Anorganische Chemie II der Technischen Universität Dortmund, D-44221 Dortmund, Germany


Received: 2013-02-07

Accepted: 2013-02-28

Published Online: 2013-04-04

Published in Print: 2013-07-01


Citation Information: Main Group Metal Chemistry, Volume 36, Issue 3-4, Pages 77–82, ISSN (Online) 2191-0219, ISSN (Print) 0792-1241, DOI: https://doi.org/10.1515/mgmc-2013-0008.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Nikolai O. Druzhkov, Gennadii G. Kazakov, Andrei S. Shavyrin, Evgenii V. Baranov, Elena N. Egorova, Alexandr V. Piskunov, and Gleb A. Abakumov
Inorganic Chemistry Communications, 2018
[2]
Kirill V. Zaitsev, Ekaterina A. Kuchuk, Andrei V. Churakov, Mger A. Navasardyan, Mikhail P. Egorov, Galina S. Zaitseva, and Sergey S. Karlov
Inorganica Chimica Acta, 2017, Volume 461, Page 213
[3]
Britta Glowacki, Michael Lutter, Dieter Schollmeyer, Wolf Hiller, and Klaus Jurkschat
Inorganic Chemistry, 2016, Volume 55, Number 20, Page 10218
[4]
Maxim G. Chegerev, Alexander V. Piskunov, Aryna V. Maleeva, Georgy K. Fukin, and Gleb A. Abakumov
European Journal of Inorganic Chemistry, 2016, Volume 2016, Number 23, Page 3813
[5]
Kirill V. Zaitsev, Valeriy S. Cherepakhin, Andrei V. Churakov, Alexander S. Peregudov, Boris N. Tarasevich, Mikhail P. Egorov, Galina S. Zaitseva, and Sergey S. Karlov
Inorganica Chimica Acta, 2016, Volume 443, Page 91
[6]
Ronny Fritzsche, Falko Seidel, Tobias Rüffer, Roy Buschbeck, Alexander Jakob, Hans Freitag, Dietrich R.T. Zahn, Heinrich Lang, and Michael Mehring
Journal of Organometallic Chemistry, 2014, Volume 755, Page 86
[7]
Michael Gock, Bianca Wiedemann, Christina Dietz, Chenyu Bai, Michael Lutter, Vinusuya Abeyawarathan, and Klaus Jurkschat
Organometallics, 2013, Volume 32, Number 15, Page 4262

Comments (0)

Please log in or register to comment.
Log in