Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Main Group Metal Chemistry

Editor-in-Chief: Jurkschat, Klaus

Editorial Board Member: Atwood, David / Basu Baul, Tushar S. / Beckmann, Jens / Chandrasekhar, Vadepalli / Izod, Keith / Jones, Cameron / Karlov, Sergey S. / Mehring, Michael / Molloy, Kieran / Ramasami, Ponnadurai / Ruhlandt-Senge, Karin / Ruzicka, Ales / Saito, Masaichi / Tokitoh, Norihiro

6 Issues per year


IMPACT FACTOR 2016: 0.490

SCImago Journal Rank (SJR) 2016: 0.217
Source Normalized Impact per Paper (SNIP) 2016: 0.329

Online
ISSN
2191-0219
See all formats and pricing
More options …
Volume 36, Issue 5-6 (Dec 2013)

Issues

Unusual reaction pathways of gallium(III) silylamide complexes

Sonja N. König / Gisela Gerstberger
  • Anorganisch-chemisches Institut, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christoph Schädle / Cäcilia Maichle-Mössmer / Eberhardt Herdtweck
  • Anorganisch-chemisches Institut, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Reiner Anwander
Published Online: 2013-10-30 | DOI: https://doi.org/10.1515/mgmc-2013-0039

Abstract

The synthesis of homoleptic gallium(III) bis(dimethylsilyl)amide Ga[N(SiHMe2)2]3 was attempted via different pathways. A transsilylamination protocol using Ga[N(SiMe3)2]3 and HN(SiHMe2)2 was unsuccessfully applied. An unexpected side product, MeGa[N(SiMe3)SiMe2N(SiMe3)2]2, could be obtained from the synthesis of homoleptic gallium(III) bis(trimethylsilyl)amide via GaCl3 and LiN(SiMe3)2. Alkane elimination from Me3Ga or Et3Ga and HN(SiHMe2)2 did not lead to the isolation of Ga[N(SiHMe2)2]3 either. When a salt metathesis route was conducted, reacting GaCl3 with LiN(SiHMe2)2, the silylamido-bridged dimeric hydride complex {H2Ga[μ-N(SiHMe2)2]}2 was obtained. Its further reaction with N,N,N′,N′-tetramethylethylendiamine (tmeda) gave the dinuclear, tmeda-bridged {[H2GaN(SiHMe2)2]2(μ-tmeda)}.

This article offers supplementary material which is provided at the end of the article.

Keywords: aluminum(III); gallium(III); hydride; methyl abstraction; silylamide

References

  • Aldridge, S.; Downs, J. A. Hydrides of the main group metals: new variations on an old theme. Chem. Rev. 2001, 101, 3305–3365.Google Scholar

  • Alexander, S. G.; Cole, M. L.; Forsyth, C. M.; Furfari, S. K.; Konstas, K. Bulky triazenide complexes of alumino- and gallohydrides. Dalton Trans. 2009, 2326–2336.Google Scholar

  • Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M. SIR-92. University of Bari, Italy, 1992.Google Scholar

  • Atwood, J. L.; Bott, S. G. ; Elms, F. M.; Jones, C.; Raston, C. L. Tertiary amine adducts of gallane: gallane-rich [{GaH3}2(TMEDA)] (TMEDA=N,N,N′,N′-tetramethylethylenediamine) and thermally robust [GaH3(quinuclidine)]. Inorg. Chem. 1991a, 30, 3792–3793.Google Scholar

  • Atwood, J. L.; Bott, S. G.; Jones, C.; Raston, C. L. Oligomeric gallium amide/hydride complexes, [H2Ga2{(NPriCH2)2}2] and [H5Ga3{(NMeCH2)2}2], via hydrometalation and metalation. Inorg. Chem. 1991b, 30, 4868–4870.Google Scholar

  • Bradley, D. C.; Ghotra, J. S.; Hart, F. A. Low co-ordination numbers in lanthanide and actinide compounds. Part I. The preparation and characterization of tris{bis(trimethylsilyl)-amido}lanthanides. J. Chem. Soc., Dalton Trans. 1973, 1021–1023.Google Scholar

  • Bradley, D. C.; Chudzynska, H.; Hammond, M. E.; Hursthouse, M. B.; Motevalli, M.; Ruowen, W. The preparation and characterization of volatile derivatives of trivalent metals using fluorinated alkoxide ligands. X-ray structures of [Sc{OCH(CF3)2}3(NH3)2]2, [Pr{OCMe(CF3)2}3(NH3)2]2, [Y{OCMe(CF3)2}3(thf)3] and [Pr{OCMe2(CF3}3]3. Polyhedron 1992, 11, 375–379.CrossrefGoogle Scholar

  • Bürger, H.; Cichon, J.; Goetze, U.; Wannagat, U.; Wismar, H. J. Beiträge zur chemie der silicium-stickstoff-verbindungen: CVII. Darstellung, schwingungsspektren und normalkoordinatenanalyse von disilylamiden der 3. Gruppe: M[N(SiMe3)2]3 mit M=Al, Ga und In. J. Organomet. Chem. 1971, 33, 1–12.CrossrefGoogle Scholar

  • Byers, J. J.; Pennington, W. T.; Robinson, G. H. Bis-adducts of trimethylaluminium and trimethylgallium with N,N,N′,N′-tetramethylethylenediamine. Acta Crystallogr., Sect. C 1992, 48, 2023–2025.Google Scholar

  • Carmalt, C. J.; Mileham, J. D.; White, A. J. P.; Williams, D. J.; Steed, J. W. Synthesis and characterization of gallium silylamido complexes. Inorg. Chem. 2001, 40, 6035–6038.Google Scholar

  • Choquette, D. M.; Timm, M. J.; Hobbs, J. L.; Rahim, M. M.; Ahmed, K. J.; Planalp, R. P. Syntheses, Structures, and isomerization processes of dialkylaluminum silylamido complexes. Organometallics 1992, 11, 529–534.CrossrefGoogle Scholar

  • Covert, K. J.; Neithamer, D. R.; Zonnevylle, M. C.; LaPointe, R. E.; Schaller, C. P.; Wolczanski, P. T. Pyridine and related adducts, (silox)3ML (M=scandium, titanium, vanadium, tantalum): η1-pyridine-N vs η2-pyridine-N,C ligation. Inorg. Chem. 1991, 30, 2494–2508.Google Scholar

  • Cowley, A. H.; Gabbaï, F. P.; Isom, H. S.; Carrano, C. J.; Bond, M. R. Basenfreie monomere organogalliumhydride. Angew. Chem. 1994, 106, 1354–1356. Base-free monomeric organogallium hydrides. Angew. Chem., Int. Ed. Engl. 1994, 33, 1253–1255.Google Scholar

  • Cowley, A. R.; Downs, A. J.; Himmel, H.-J.; Marchant, S.; Parsons, S.; Yeoman, J. A. 1,1,3,3-Tetramethylguanidine-gallane, (Me2N)2CN(H)*GaH3: an unusually strongly bound gallane adduct. Dalton Trans. 2005, 1591–1597.Google Scholar

  • Eppinger, J.; Herdtweck, E.; Anwander, R. Synthesis and characterization of alkali metal bis(dimethylsilyl) amides: infinite all-planar laddering in the unsolvated sodium derivative. Polyhedron 1998, 17, 1195–1201.CrossrefGoogle Scholar

  • Farrugia, L. J. Win, G. X. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 1999, 32, 837.CrossrefGoogle Scholar

  • Gardiner, M. G.; Raston, C. L.; Cloke, F. G. N.; Hitchcock, P. B. 1,4-Bis(trimethylsilyl)but-2-ene-1,4-diyl complexes of lithium, magnesium, aluminum, and gallium. Organometallics 1995, 14, 1339–1353.Google Scholar

  • Gerstberger, G. Molekulare und immobilisierte selternerd(III)-silylamide. Technische Universität München, 1999.Google Scholar

  • Goode, M. J.; Downs, A. J.; Pulham, C. R.; Rankin, D. W. H.; Robertson, H. E. Monochlorogallane: synthesis, properties, and structure of the dimer H2Ga(μ-Cl)2GaH2 in the gas phase as determined by electron diffraction. J. Chem. Soc., Chem. Commun. 1988, 768–769.Google Scholar

  • Gorden, J. D.; Macdonald, C. L. B.; Cowley, A. H. The unusual reaction of Ga(C5Me5)3 with a nucleophilic carbene. J. Organomet. Chem. 2002, 643–644, 487–489.Google Scholar

  • Green, M. L. H.; Mountford, P.; Smout, G. J.; Speel, S. R. New synthetic pathways into the organometallic chemistry of gallium. Polyhedron 1990, 9, 2763–2765.CrossrefGoogle Scholar

  • Hallock, R. B.; Hunter, W. E.; Atwood, J. L.; Beachley, O. T. Synthesis, characterization and crystal and molecular structure of Ga(CH2SiMe3)3*Me2NC2H4NMe2*Ga(CH2SiMe3)3. Organometallics 1985, 4, 547–549.CrossrefGoogle Scholar

  • Hansmann, M. M.; Melen, R. L.; Wright, D. S. Group 13 BN dehydrocoupling reagents, similar to transition metal catalysts but with unique reactivity. Chem. Sci. 2011, 2, 1554–1559.CrossrefGoogle Scholar

  • Herrmann, W. A.; Anwander, R.; Munck, F. C.; Scherer, W.; Dufaud, V.; Huber, N. W.; Artus, G. R. J. Lanthanoiden-Komplexe, IX; Reaktivitätsbestimmender Einfluss der Ligandenkonstitution bei Seltenerdamiden: Herstellung und Struktur sterisch überladener Alkoxid-Komplexe. Z. Naturforsch. 1994, 49b, 1789–1797.Google Scholar

  • Hill, J. B.; Talley, T. A.; Pennington, W. T.; Robinson, G. H. Reaction of trimethylaluminum and trimethylgallium with bifunctional amines: syntheses and molecular structures of [Me2Al−N(CH2CH2)2-C-(OCH2)2]2 and [Me2Ga-N(Si(H)Me2)2]2. J. Chem. Crystallogr. 1994, 24, 61–65.CrossrefGoogle Scholar

  • Hodgson, M.; Khan, M.; Wehmschulte, R. Synthesis and reactivity of amidoaluminum hydride compounds as potential precursors to AlN. J. Cluster Sci. 2002, 13, 503–520.Google Scholar

  • Hwang, J. W.; Hanson, S. A.; Britton, D.; Evans, J. F.; Jensen, K. F.; Gladfelter, W. L. Cyclotrigallazane, [H2GaNH2]3. Its preparation, structure, and conversion to cubic gallium nitride at 150°C. Chem. Mater. 1990, 2, 342–343.CrossrefGoogle Scholar

  • Janik, J. F.; Duesler, E. N.; Paine, R. T. Synthesis and structure of a silyl-aminoalane ring. Chem. Ber. 1993, 126, 2649–2651.Google Scholar

  • Jende, L. N.; Maichle-Mössmer, C.; Schädle, C.; Anwander, R. Yttrium half-sandwich complexes bearing the 2-(N,N-dimethylamino)ethyl-tetramethylcyclopentadienyl ligand. J. Organomet. Chem. 2013, 744, 74–81.Google Scholar

  • Jones, C.; Mills, D. P.; Rose, R. P. Oxidative addition of an imidazolium cation to an anionic gallium(I) N-heterocyclic carbene analogue: synthesis and characterisation of novel gallium hydride complexes. J. Organomet. Chem. 2006, 691, 3060–3064.Google Scholar

  • Kormos, B. L.; Jegier, J. A.; Ewbank, P. C.; Pernisz, U.; Young, V. G.; Cramer, C. J.; Gladfelter, W. L. Oligomeric rods of alkyl- and hydridogallium imides. J. Am. Chem. Soc. 2005, 127, 1493–1503.CrossrefGoogle Scholar

  • Kühner, S.; Kuhnle, R.; Hausen, H. D.; Weidlein, J. Methylmetall(III)-stickstoffverbindungen mit oligocyclischer sowie mit käfigstruktur (M(III)=Al, Ga, In). Z. Anorg. Allg. Chem. 1997, 623, 25–34.Google Scholar

  • Li, X.-W.; Wei, P.; Beck, B. C.; Xie, Y.; Schaefer III, H. F.; Su, J.; Robinson, G. H. Synthesis and molecular structure of an unusual -Ga-Ga-Ga-linked organometallic. Chem. Commun. 2000, 453–454.Google Scholar

  • Linti, G.; Çoban, S.; Rodig, A.; Sandholzer, N. Siliciumhaltige ringverbindungen des galliums und indiums – neue hydridogallanate. Z. Anorg. Allg. Chem. 2003, 629, 1329–1333.Google Scholar

  • Luo, B.; Gladfelter, W. L. 1,1-Dimethylhydrazidogallane and a gallium hydrazide with two GaN rings bridged by two NNMe ligands. Chem. Commun. 2000, 825–826.Google Scholar

  • Luo, B.; Young, V. G.; Gladfelter, W. L. Syntheses and structures of quinuclidine-stabilized amido- and azidogallanes. Inorg. Chem. 2000, 39, 1705–1709.Google Scholar

  • Luo, B.; Young Jr, V. G.; Gladfelter, W. L. Si-C bond cleavage in the reaction of gallium chloride with lithium bis(trimethylsilyl)amide and thermolysis of base adducts of dichloro(trimethylsilyl)amido gallium compounds. J. Organomet. Chem. 2002, 649, 268–275.Google Scholar

  • Luo, B; Lee, S. Y.; White, J. M. Adsorption, desorption, and reaction of a gallium nitride precursor, (H2GaNHNMe2)2, on HfO2. Chem. Mater. 2004, 16, 629–638.CrossrefGoogle Scholar

  • Lustig, C.; Mitzel, N. W. Crystal structures of the supramolecular aggregates of the methyl and chloro substituted gallanes MexGaCl3-x. Z. Naturforsch. 2004, 59b, 140–147.Google Scholar

  • McMurran, J.; Dai, D.; Balasubramanian, S. C.; Kouvetakis, J.; Hibbard, J. L. H2GaN3 and derivatives: a facile method to gallium nitride. Inorg. Chem. 1998, 37, 6638Google Scholar

  • Mukherjee, D.; Ellern, A.; Sadow, A. D. Conversion of a zinc disilazide to a zinc hydride mediated by LiCl. J. Am. Chem. Soc. 2010, 132, 7582–7583.Google Scholar

  • Nagl, I.; Scherer, W.; Tafipolsky, M.; Anwander, R. The first oligomeric samarium(ii) silylamide: coordinative saturation through agostic Sm···SiH interactions. Eur. J. Inorg. Chem. 1999, 1405–1407.Google Scholar

  • Neumayer, D. A.; Ekerdt, J. G. Growth of group III nitrides. A review of precursors and techniques. Chem. Mater. 1996, 8, 9–25.CrossrefGoogle Scholar

  • Nogai, S.; Schmidbaur, H. Dichlorogallane (HGaCl2)2: its molecular structure and synthetic potential. Inorg. Chem. 2002, 41, 4770–4774.Google Scholar

  • O’Hare, D.; Foord, J. S.; Page, T. C. M.; Whitaker, T. J. Gallane adducts of bifunctional group V ligands; crystal structures of (GaH3)2(tmen) and (GaH3)2(dmpe). J. Chem. Soc., Chem. Commun. 1991, 1445–1447.Google Scholar

  • Paciorek, K. J. L.; Nakahara, J. H.; Hoferkamp, L. A.; George, C.; Flippen-Anderson, J. L.; Gilardi, R.; Schmidt, W. R. Reactions of tris[bis(trimethylsilyl)amino]aluminum with ammonia and pyrolysis studies. Chem. Mater. 1991, 3, 82–87.CrossrefGoogle Scholar

  • Pugh, D.; Marchand, P.; Parkin, I. P.; Carmalt, C. J. Group 13 β-ketoiminate compounds: gallium hydride derivatives as molecular precursors to thin films of Ga2O3. Inorg. Chem. 2012, 51, 6385–6395.Google Scholar

  • Quillian, B.; Wang, Y.; Wei, P.; Wannere, C. S.; Schleyer, P. V. R.; Robinson, G. H. Gallepins. Neutral gallium analogues of the tropylium ion: synthesis, structure, and aromaticity. J. Am. Chem. Soc. 2007, 129, 13380–13381.Google Scholar

  • Riedel, R.; Schaible, S.; Klingebiel, U.; Noltemeyer, M.; Werner, E. Bis(dichlor-N-trimethylsily)cycloaminoalan kristallstruktur und thermischer abbau zu aluminiumnitrid. Z. Anorg. Allg. Chem. 1991, 603, 119–127.Google Scholar

  • Rudolf, D.; Kaifer, E.; Himmel, H.-J. Novel bi- and trinuclear gallium halides and hydrides with acyclic and bicyclic guanidinate substituents: synthesis and reactivity. Eur. J. Inorg. Chem. 2010, 2010, 4952–4961.Google Scholar

  • Schmidbauer, H; Findeiss, W. Ein einfacher weg zu organogalliumverbindungen. Angew. Chem. 1964, 76, 752–753. A simple route to organogallium compounds. Angew. Chem., Int. Ed. Engl. 1964, 3, 696.Google Scholar

  • Schmidbaur, H.; Findeiss, W. Neue wege zu organogalliumhalogeniden. Chem. Ber. 1966, 99, 2187–2196.Google Scholar

  • Schmidbaur, H.; Schmidt, M. Über alkylsilazalane. Angew. Chem. 1962, 74, 327–328. Alkylsilazalanes. Chem., Int. Ed. Engl. 1962, 1, 327–328.Google Scholar

  • Schmidbaur, H.; Wolfsberger, M. W. Isostere des hexamethyldisiloxans und des tris-trimethylsilylamins. Angew. Chem. 1966, 78, 306–307. Isosteres of hexamethyldisiloxane und tris(trimethylsilylamine). Angew. Chem., Int. Ed. Engl. 1966, 5, 312.Google Scholar

  • Schulz, A.; Mayer, P.; Villinger, A. An unusual reaction: a GaCl3-assisted methyl/chlorine exchange in silylated hydrazinodichloroarsane. Inorg. Chem. 2007, 46, 8316–8322.Google Scholar

  • Schumann, H.; Just, O.; Seuß, T. D.; Weimann, R. Intramolekular stabilisierte gallium- und indiumorganyle: synthese und röntgenstrukturanalyse repräsentativer 5-methyl-1- galla(inda)-5-azacyclooktane. J. Organomet. Chem. 1994, 472, 15–26.Google Scholar

  • Sheldrick, G. M. SHELXL-93. Crystallographic Computing 1993, 3, 175–189.Google Scholar

  • Sheldrick, G. M. SHELXS, SHELXL. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008a, 64, 112.Google Scholar

  • Sheldrick, G. M. SADABS v. 2008/1. University of Göttingen: Göttingen, 2008b.Google Scholar

  • Sheldrick, G. M.; Sheldrick, W. S. Crystal and molecular structure of tris[bis(trimethylsilyl)amino]aluminium, Al[N(SiMe3)2]3. J. Chem. Soc. A 1969, 2279–2282.Google Scholar

  • Singh, S.; Ahn, H.-J.; Stasch, A.; Jancik, V.; Roesky, H. W.; Pal, A.; Biadene, M.; Herbst-Irmer, R.; Noltemeyer, M.; Schmidt, H.-G. Syntheses, characterization, and X-ray crystal structures of β-diketiminate group 13 hydrides, chlorides, and fluorides. Inorg. Chem. 2006, 45, 1853–1860.Google Scholar

  • Uhl, W. Hydroalumination and hydrogallation of alkynes: New insights into the course of well-known reactions. Coord. Chem. Rev. 2008, 252, 1540–1563.Google Scholar

  • Uhl, W.; El-Hamdan, A. H. Die reaktion des digalliumsubiodids R(I)Ga-Ga(I)R [R=C(SiMe3)3] mit lithium-diphenylphosphanid – radikalische öffnung der Ga-Ga-bindung. Z. Anorg. Allg. Chem. 2006, 632, 793–796.Google Scholar

  • Uhl, W.; Molter, J.; Neumüller, B.; Saak, W. Aluminiumhydrazide. Bildung eines dimeren di(tert-butyl)aluminiumhydrazids mit viergliedrigem Al2N2-heterozyklus und umsetzung eines dialkylaluminiumchlorids mit dilithium-bis(trimethylsilyl)hydrazid. Z. Anorg. Allg. Chem. 2000, 626, 2284–2292.Google Scholar

  • Uhl, W.; Kovert, D.; Zemke, S.; Hepp, A. Unexpected formation of Ga4C2H4 heteroadamantane cages by the reaction of carbon-bridged bis(dichlorogallium) compounds with tert-butyllithium. Organometallics 2011, 30, 4736–4741.CrossrefGoogle Scholar

  • Waezsada, S. D.; Rennekamp, C.; Roesky, H. W.; Röpken, C.; Parisini, E. Neue aminometallane des aluminiums und galliums. Z. Anorg. Allg. Chem. 1998, 624, 987–990.Google Scholar

  • Wehmschulte, R. J.; Ellison, J. J.; Ruhlandt-Senge, K.; Power, P. P. New base-free alanes and gallanes: synthesis and characterization of monomeric Mes*2GaH (Mes*=2,4,6-tert-Bu3C6H2), dimeric (Trip2MH)2 (Trip=2,4,6-i-Pr3C6H2; M=Al, Ga), and related sterically crowded arylaluminum species. Inorg. Chem. 1994, 33, 6300–6306.Google Scholar

  • Yandulov, D. V.; Huffman, J. C.; Caulton, K. G. Conventional lithium bases as unconventional sources of methyl anion: facile Me-Si and Me-C bond cleavage in RLi, R2NLi, and BR4- by an electrophilic osmium dihydride. Organometallics 2002, 21, 4030–4049.Google Scholar

  • Yuen, H. F.; Marks, T. J. Synthesis and catalytic properties of phenylene-bridged binuclear organolanthanide complexes. Organometallics 2008, 27, 155–158.CrossrefGoogle Scholar

About the article

Corresponding author: Reiner Anwander, Institut für Anorganische Chemie, Auf der Morgenstelle 18, D-72076 Tübingen, Germany, e-mail:


Received: 2013-08-09

Accepted: 2013-09-20

Published Online: 2013-10-30

Published in Print: 2013-12-01


Citation Information: Main Group Metal Chemistry, ISSN (Online) 2191-0219, ISSN (Print) 0792-1241, DOI: https://doi.org/10.1515/mgmc-2013-0039.

Export Citation

©2013 by Walter de Gruyter Berlin Boston. Copyright Clearance Center

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Jan Horstmann, Mentor Hyseni, Andreas Mix, Beate Neumann, Hans-Georg Stammler, and Norbert W. Mitzel
Angewandte Chemie, 2017, Volume 129, Number 22, Page 6203
[2]
Jan Horstmann, Mentor Hyseni, Andreas Mix, Beate Neumann, Hans-Georg Stammler, and Norbert W. Mitzel
Angewandte Chemie International Edition, 2017, Volume 56, Number 22, Page 6107
[3]
Sonja N. König, Christoph Schädle, Cäcilia Maichle-Mössmer, and Reiner Anwander
Inorganic Chemistry, 2014, Volume 53, Number 9, Page 4585

Comments (0)

Please log in or register to comment.
Log in