Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Main Group Metal Chemistry

Editor-in-Chief: Jurkschat, Klaus

Editorial Board Member: Atwood, David / Basu Baul, Tushar S. / Beckmann, Jens / Chandrasekhar, Vadepalli / Izod, Keith / Jones, Cameron / Karlov, Sergey S. / Mehring, Michael / Molloy, Kieran / Naseer, Muhammad Moazzam / Ramasami, Ponnadurai / Ruhlandt-Senge, Karin / Ruzicka, Ales / Saito, Masaichi / Sarazin, Yann / Tokitoh, Norihiro

6 Issues per year


IMPACT FACTOR 2016: 0.490

SCImago Journal Rank (SJR) 2016: 0.217
Source Normalized Impact per Paper (SNIP) 2016: 0.329

Online
ISSN
2191-0219
See all formats and pricing
More options …
Volume 39, Issue 5-6 (Dec 2016)

Issues

Green and facile synthesis of Fe3O4-PbS magnetic nanocomposites applicable for the degradation of toxic organic dyes

Kambiz Hedayati
  • Corresponding author
  • Department of Science, Arak University of Technology, Arak, PO Box 3818141167, Iran (Islamic Republic of)
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mojtaba Goodarzi / Mohsen Kord
Published Online: 2016-11-17 | DOI: https://doi.org/10.1515/mgmc-2016-0027

Abstract

Magnetite (Fe3O4) and lead sulfide (PbS) nanostructures were synthesized via a simple precipitation method in water by using green capping agents. Then, Fe3O4-PbS nanocomposites were prepared by facile chemical procedure. The effects of concentration, temperature as well as precipitating and capping agents on the morphology and particle size of the magnetic products were investigated. Sugars and carbohydrates were used as green, cost-effective, and safe bio-compatible capping agents. The prepared magnetic products were characterized by X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. Alternating gradient force magnetometer was used to identify the super-paramagnetic property of the samples. The photo-catalytic behaviour of nanocomposites was evaluated using the degradation of azo dyes under ultraviolet light irradiation.

Keywords: composite; magnetite; nano; PbS

References

  • Chang, C.; Xiao, Y.; Zhang, X.; Pei, Y.; Li, F.; Ma, S.; Zhao, L. D. High performance thermoelectrics from earth-abundant materials: Enhanced figure of merit in PbS through nanostructuring grain size. J. Alloy. Compd. 2016, 664, 411–416.Google Scholar

  • Csanády, A.; Sajó, I.; Lábár, J. L.; Szalay, A.; Papp, K.; Balaton, G.; Kalmán, E. Al–Pb nanocomposites made by mechanical alloying and consolidation. Current Appl. Phys. 2006, 6, 131–134.Google Scholar

  • Feng, J.; Yu, S.; Li, J.; Mo, T.; Li, P. Enhancement of the catalytic activity and stability of immobilized aminoacylase using modified magnetic Fe3O4 nanoparticles. Chem. Eng. J. 2016, 286, 216–222.Google Scholar

  • Ghanbari, D.; Salavati-Niasari, M. Synthesis of urchin-like CdS-Fe3O4 nanocomposite and its application in flame retardancy of magnetic cellulose acetate. J. Ind. Eng. Chem. 2015, 24, 284–292.Google Scholar

  • Hmar, J. J. L.; Majumder, T.; Mondal, S. P. Growth and characteristics of PbS/polyvinyl alcohol nanocomposites for flexible high dielectric thin film applications. Thin Solid Films 2016, 598, 243–251.Google Scholar

  • Kakavandi, B.; Takdastan, A.; Jaafarzadeh, N.; Azizi, M.; Mirzaei, A.; Azari, A. Application of Fe3O4@ C catalyzing heterogeneous UV-Fenton system for tetracycline removal with a focus on optimization by a response surface method. J. Photochem. Photobio. A: Chem. 2016, 314, 178–188.Google Scholar

  • Liu, B.; Li, H.; Chew, C. H.; Que, W.; Lam, Y. L.; Kam, C. H.; Xu, G. Q. PbS–polymer nanocomposite with third-order nonlinear optical response in femtosecond regime. Mater. Lett. 2001, 51, 461–469.Google Scholar

  • Mandal, A. R.; Bekturganova, A.; Ishteev, A.; Choudhury, S. P.; Karunakaran, G.; Kunetsov, D. Effect of silver doping on the current–voltage characteristic of PbS nanorods. Physica E Low. Dimens. Syst. Nanostruct. 2016, 79, 147–151.Google Scholar

  • Nabiyouni, G.; Ghanbari, D.; Yousofnejad, A.; Seraj, M. A sonochemical-assisted method for synthesis of BaFe12O19 nanoparticles and hard magnetic nanocomposites. J. Ind. Eng. Chem. 2014, 20, 3425–3429.Google Scholar

  • Ntwaeaborwa, O. M.; Kroon, R. E.; Kumar, V.; Dubroca, T.; Ahn, J. P.; Park, J. K.; Swart, H. C. Ex situ synthesis and optical properties of ZnO–PbS nanocomposites. J. Phys. Chem. Solids 2009, 70, 1438–1442.Google Scholar

  • Pourahmad, A. Preparation and spectroscopic studies of PbS/nanoMCM-41 nanocomposite. Arab. J. Chem. 2014, 7, 788–792.Google Scholar

  • Pullar, R. C. Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Progress Mater. Sci. 2012, 57, 1191–1334.Google Scholar

  • Saffari, J.; Mir, N.; Ghanbari, D.; Khandan-Barani, K.; Hassan-abadi, A.; Hosseini-Tabatabaei; M. R. Sonochemical synthesis of Fe3O4/ZnO magnetic nanocomposites and their application in photo-catalytic degradation of various organic dyes. J. Mater. Sci. Mater. Electron. 2015, 26, 9591.Google Scholar

  • Sathyamoorthy, R.; Kungumadevi, L. Facile synthesis of PbS nanorods induced by concentration difference. Adv. Powder Tech. 2015, 26, 355–361.Google Scholar

  • Shen, W.; Mu, Y.; Xiao, T.; Ai, Z. Magnetic Fe3O4–FeB nanocomposites with promoted Cr (VI) removal performance. Chem. Eng. J. 2016, 285, 57–68.Google Scholar

  • Van Blaaderen, A.; Vrij, A. Synthesis and characterization of monodisperse colloidal organo-silica spheres. J. Colloid. Interface Sci. 1993, 156, 1–18.Google Scholar

  • Wang, Z.; Zhu, S.; Zhao, S.; Hu, H. Synthesis of core–shell Fe3O4@ SiO2@ MS (M=Pb, Zn, and Hg) microspheres and their application as photocatalysts. J. Alloy. Compds. 2011, 509, 6893–6898.Google Scholar

  • Yadav, S. K.; Jeevanandam, P. Synthesis of PbS–Al2O3 nanocomposites by sol–gel process and studies on their optical properties. Optic. Mater. 2015, 46, 209–215.Google Scholar

  • Yang, R. B.; Reddy, P. M.; Chang, C. J.; Chen, P. A.; Chen, J. K.; Chang, C. C. Synthesis and characterization of Fe3O4/polypyrrole/carbon nanotube composites with tunable microwave absorption properties: role of carbon nanotube and polypyrrole content. Chem. Eng. J. 2016, 285, 497–507.Google Scholar

  • Zhang, L.; Dai, P.; Yu, X., Li, Y.; Bao, Z.; Zhu, J.; Bi, H. The preparation of Fe3O4 cube-like nanoparticles via the ethanol reduction of α-Fe2O3 and the study of its electromagnetic wave absorption. Appl. Surf. Sci. 2015, 359, 723–728.Google Scholar

  • Zhu, Z.; Lu, Z.; Wang, D.; Tang, X.; Yan, Y.; Shi, W.; Dong, H. Construction of high-dispersed Ag/Fe3O4/gC3N4 photocatalyst by selective photo-deposition and improved photocatalytic activity. Appl. Catal. B: Env. 2016, 182, 115–122.Google Scholar

About the article

Received: 2016-06-14

Accepted: 2016-10-18

Published Online: 2016-11-17

Published in Print: 2016-12-01


Citation Information: Main Group Metal Chemistry, ISSN (Online) 2191-0219, ISSN (Print) 0792-1241, DOI: https://doi.org/10.1515/mgmc-2016-0027.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Zahra Ebrahimi, Kambiz Hedayati, and Davood Ghanbari
Journal of Materials Science: Materials in Electronics, 2017, Volume 28, Number 18, Page 13956

Comments (0)

Please log in or register to comment.
Log in