Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Miscellanea Geographica

Regional Studies on Development

4 Issues per year

CiteScore 2016: 0.40

SCImago Journal Rank (SJR) 2016: 0.227
Source Normalized Impact per Paper (SNIP) 2016: 0.404

Covered by e.g. Web of Science Core Collection by Clarivate Analytics, and SCOPUS by Elsevier
14 points in the Ministerial journal value rating scale

Open Access
See all formats and pricing
More options …

The Potential of Fuzzy Logic for Quantitative Land Cover Change Analysis Basing on Historical Topographic Maps

Maria Zachwatowicz
Published Online: 2012-08-13 | DOI: https://doi.org/10.2478/v10288-012-0014-5

The Potential of Fuzzy Logic for Quantitative Land Cover Change Analysis Basing on Historical Topographic Maps

This paper describes an approach that allows to reduce error propagation when comparing historical topographic maps. By linking the fuzzy set theory with simple map algebra and Kappa statistics, the uncertainty resulting from dissimilar quality of the maps can at least be partly eliminated and a distinction between ‘true’ and ‘false’ land cover changes can be made.

Keywords: old topographic maps; land cover change; fuzzy sets; Kappa statistics; quantitative analysis

  • Adamczyk J., Będkowski K., 2007. Metody cyfrowe w teledetekcji [Numerical methods in remote sensing], Wydawnictwo SGGW, WarszawaGoogle Scholar

  • Angold P. G., Gurell A. M., Edwards P. J., 1995. Location errors in maps from environmental surveys and their implications for information extraction. Journal of Environmental Management 47, 341-345Google Scholar

  • Antrop M., 1997. A concept of traditional landscapes as a base for landscape evaluation and planning. The example of Flanders Region. Landscape and Urban Planning 38, 105-107CrossrefGoogle Scholar

  • Bender O., Boehmer H. J., Jens D., Schumacher K. P., 2005. Using GIS to analyse long-term cultural landscape change in Southern Germany. Landscape and Urban Planning 70, 111-125CrossrefGoogle Scholar

  • Cohen J., 1960, A coefficient of agreement for nominal scales, Educational and Psychological Measurement 20, 1, 37-46.Google Scholar

  • Dragicević S., Marceau D. J., Marois C., 2001. Space, time and dynamics modelling in historical GIS data bases: a fuzzy logic approach. Environment and Planning B: Planning and Design 28, 545-562CrossrefGoogle Scholar

  • Dunajski A., Sieczka M., 2008. The Impact of Rectification Error on the Analysis of Landscape Transformation Based on Archival Maps, Dissertations Commission of Cultural Landscape No. 8, Commission of Cultural Landscape of Polish Geographical Society, SosnowiecGoogle Scholar

  • Giętkowski T., Zachwatowicz M., 2010, Przemiany krajobrazu - czy można uniknąć złudzeń? [Landscape changes - can we avoid illusions?], in: Geograficzne spotkania w drodze. Krok trzeci - Warszawa.Materiały III Ogólnopolskiej Konferencji Geografów - Doktorantów, Uniwersytet Warszawski 10-11 października 2008 r.Google Scholar

  • Hagen A., 2002, Multi-method assessment of map similarity, Proceedings of the 5th AGILE Conference on Geographic Information Science, 171-182Google Scholar

  • Hagen A., 2003. Fuzzy set approach to assessing similarity of categorical maps. International Journal of Geographical Information Science 17(3), 235-249CrossrefGoogle Scholar

  • Hagen-Zanker A., 2006. Map comparison methods that simultaneously address overlap and structure. Journal of Geographical Systems 8(2), 165-185CrossrefGoogle Scholar

  • Kienast F., Frank C., Leu R., 1991. Analyse raum-zeitlicher Daten mit einem Geographischen Informationssystem. Berichte der Eidgenoessischen Forschungsanhalt fuer Wald, Schnee und Landschaft 328.Google Scholar

  • Kondracki J., 2001, Geografia regionalna Polski [Regional geography of Poland], PWN, Warszawa.Google Scholar

  • Longley P. A., Goodchild M. F., Maguire D. J., Hind. D. W., 2006. GIS Teoria i praktyka [GIS Theory and practice], Wydawnictwo Naukowe PWN, WarszawaGoogle Scholar

  • Metternicht G., 1999, Change detection assessment using fuzzy sets and remotely sensed data: an application of topographic map revision, ISPRS Journal of Photogrammetry and Remote Sensing 54(4), 221-233CrossrefGoogle Scholar

  • Neubert M., Walz U., 2002. Auswertung historischer Kartenwerke fuer ein Landschaftsmonitoring. in: Strobl J., Blaschke T., Griesebner G. (ed.), Angewandte Geogra phische Informationsverarbeitung 14, Wichmann, Heidelberg, 396-402Google Scholar

  • Neubert M., Walz U., 2005. Historische Landschaftsanalyse fuer grenzueberschreitende Nationalparkregionen. in: Strobl J., Blaschke T., Griesebner G. (ed.), Angewandte Geoinformatik 2005. Wichmann, Heidelberg, 513-519Google Scholar

  • Ołdak A., 2001. Biotic potential determination using geographical information systems, fuzzy logic and classical approaches. Die Erde 132(4), 421-436Google Scholar

  • Pontius Jr. R. G., 2000, Quantification error versus location error in comparison of categorical maps, Photogrammetric Engineering & Remote Sensing 66, 1011-1016Google Scholar

  • Pontius Jr. R. G., Schneider, L. C., 2001, Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems & Environment, 85(1-3), 239-248Google Scholar

  • Power C., Simms, A., White R., 2001. Hierarchical fuzzy pattern matching for the regional comparison of land use maps. International Journal of Geographical Information Science 15(1), 77-100.CrossrefGoogle Scholar

  • Privat C., 1996. Einsatz von Geo-Informationsyssystemen bei kulturlandschaftlichen Fragestellungen. Beitraege zur Landesentwlicklung 51, 54-60Google Scholar

  • Steinhardt U., 1998. Applying the fuzzy set theory for medium and small scale landscape assessment, Landscape and Urban Planning 41, 203-208CrossrefGoogle Scholar

  • Syrbe R. U., 1996, Fuzzy-Bewertungsmethoden für Landschaftsökologie und Landschaftsplanung, Archiv für Naturschutz und Landschaftsforschung 34, 181-206Google Scholar

  • Tang G., Shafer S. L., Bartlein P. J., Holman J. O., 2009. Effects of experimental protocol on global vegetation model accuracy: A comparison of simulated and observed vegetation patterns for Asia. Ecological modelling 220 (12), 1481-1491Google Scholar

  • Visser H. (ed.), 2004. The Map Comparison Kit. Software, methods and applications. RIVM project S/550002/01/TO, Tools for Uncertainty AnalysisGoogle Scholar

  • Visser H., Nijs T. de, 2006. The Map Comparison Kit. Environmental Modelling Software 21(3), 346-358CrossrefGoogle Scholar

  • Winter S., 2000, Location similarity of regions. ISPRS Journal of Photogrammetry & Remote Sensing 55(3), 189-200Google Scholar

  • Zadeh L. A., 1965. Fuzzy sets. Information and Control 8, 338-353CrossrefGoogle Scholar

  • Cartographic materialsGoogle Scholar

  • Karte des Westlichen Russlands 1:100 000, 1915, Königlich Preußischen Landesaufnahme, map sheets: G39, G40.Google Scholar

  • Mapa taktyczna Polski 1:100 000 [Tactical map of Poland 1:100 000], 1937-38, Wojskowy Instytut Geograficzny, map sheets: P46 S31, P47 S31Google Scholar

  • Mapa topograficzna 1:50 000 [Topographic map 1:50 000], 2000, Główny Urząd Geodezji i Kartografii, map sheets: M-34-53-B, M-34-53-D, M-34-54-A, M-34-54-C.Google Scholar

  • Topograficzna Karta Królestwa Polskiego 1: 126 000 [Topographic map of the Kingdom of Poland 1: 126 000], 1839, Kwatermistrzostwo Sztabu Generalnego Wojska Polskiego, map sheets: K3S7, K3S8, K4S7, K4S8.Google Scholar

  • Wojskowa mapa topograficzna 1: 50 000 [Military topographic map 1:50 000], 1974, first edition, Służba Topograficzna Wojska Polskiego, map sheets: M-34-53-D, M-34-53-B, M-34-54-A, M-34-54-C.Google Scholar

About the article

Published Online: 2012-08-13

Published in Print: 2011-01-01

Citation Information: Miscellanea Geographica - Regional Studies on Development, Volume 15, Issue , Pages 231–240, ISSN (Online) 2084-6118, ISSN (Print) 0867-6046, DOI: https://doi.org/10.2478/v10288-012-0014-5.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in