Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Miscellanea Geographica

Regional Studies on Development

4 Issues per year


CiteScore 2016: 0.40

SCImago Journal Rank (SJR) 2016: 0.227
Source Normalized Impact per Paper (SNIP) 2016: 0.404

14 points
in the Ministerial journal value rating scale.

Covered by e.g. Emerging Sources Citation Index (Web of Science Core Collection by Clarivate Analytics, formerly Thomson Reuters) and SCOPUS by Elsevier

Open Access
Online
ISSN
2084-6118
See all formats and pricing
More options …

Heat stress and occupational health and safety – spatial and temporal differentiation

Krzysztof Błażejczyk
  • Corresponding author
  • Department of Climatology Institute of Phisical Geography Faculty of Geography and Regional Studies University of Warsaw
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jarosław Baranowski / Anna Błażejczyk
Published Online: 2014-03-31 | DOI: https://doi.org/10.2478/mgrsd-2014-0011

Abstract

Evidence of climatic health hazards on the general population has been discussed in many studies but limited focus is placed on developing a relationship between climate and its effects on occupational health. Long working hours with high physical activity can cause health problems for workers ranging from mild heat cramps to severe heat stroke leading to death. The paper presents the possible risk of heat hazard to outdoor workers, using the example of Warsaw. The heat stress hazard, defined by WBGT values above 26 and 28°C and UTCI above 32 and 38°C, is assessed from two perspectives: its spatial distribution on a local scale and its temporal changes during the 21st century due to climate change. City centre and industrial districts were identified as the places with the greatest heat stress hazard. The number of heat stress days in a year (as predicted for the 21st century) is increasing, meaning that heat-related illnesses are more likely to have a direct impact on workers’ health.

Keywords: Heat stress; occupational health; UTCI; WBGT; Warsaw Agglomeration; climate change

References

  • Adélio, RG & Divo, AQ 2009, ‘Physical modelling of globe and natural wet bulb temperatures to predict WBGT heat stress index in outdoor environments’, Int J Biometeorol, vol. 53, pp. 221-230.Web of ScienceGoogle Scholar

  • Bernard, TE & Pourmoghani, M 1999, ‘Prediction of Workplace Wet Bulb Global Temperature’, Applied Occupational and Environmental Hygiene, vol. 14, pp. 126-134.Google Scholar

  • Błażejczyk, K 2004, ‘Radiation balance in man in various meteorological and geographical conditions’, Geographia Polonica, vol. 77, no. 1, pp. 63-76.Google Scholar

  • Błażejczyk, K 2005, ‘Radiation balance of different segments of the human body’, DWD, Annalen der Meteorologie, vol. 41, no. 1, pp. 313-316.Google Scholar

  • Błażejczyk, K 2007, ‘Multiannual and seasonal weather fluctuations and tourism in Poland’, in Climate Change and Tourism Assessment and Copying Strategies, eds B Amelung, K Błażejczyk & A Matzarakis, Institute of Geography and Spatial Organization Polish Academy of Sciences, Maastricht-Warsaw-Freiburg, pp. 69-90.Google Scholar

  • Błażejczyk, K 2011, ‘Mapping of UTCI in local scale (the case of Warsaw)’, Prace i Studia Geograficzne WGSR UW, vol. 47, pp. 275-283.Google Scholar

  • Błażejczyk, K & Błażejczyk, A 2013, ‘Climate change and heat stress in the 21st century - an example from Poland’, in Proceedings of the 15th International Conference on Environmental Ergonomics, 11-15th February, Queenstown, New Zealand, eds JD Cotter, SJE Lucas & T Mundel, Queenstown, International Society for Environmental Ergonomics, pp. 31-33.Google Scholar

  • Błażejczyk, K, Bröde, P, Fiala, D, Havenith, G, Holmér, I, Jendritzky, G, Kampmann, B & Kunert, A 2010, ‘Principles of the new Universal Thermal Climate Index (UTCI) and its application to bioclimatic research in European scale’, Miscelanea Geographica, vol. 14, pp. 91-102.Google Scholar

  • Błażejczyk, K, Epstein, Y, Jendritzky, G, Staiger, H & Tinz, B 2012, ‘Comparison of UTCI to selected thermal indices’, Int J Biometeorol, vol. 56, pp. 515-535.Web of ScienceGoogle Scholar

  • Błażejczyk, K & Kunert, A 2006, ‘Differentiation of bioclimatic conditions of urban areas (the case of Poland)’, in 6th International Conference on Urban Climate, Preprints, June 12-16 2006, Göteborg, Sweden, Göteborg University, pp. 213-216.Google Scholar

  • Błażejczyk, K & Kunert, A 2011, ‘Bioklimatyczne podstawy rekreacji i turystyki w Polsce, 2 wydanie’ (Bioclimatic principles of recreation and tourism in Poland, 2nd edition), Monografie IGiPZ PAN, vol. 14.Google Scholar

  • Błażejczyk, K, Lindner-Cendrowska, K & Błażejczyk, A 2013, ‘Assessment of heat stress at various outdoor spaces in the city (an example from Warsaw)’, in Proceedings of the 15th International Conference on Environmental Ergonomics, 11-15th February, Queenstown, New Zealand, eds JD Cotter, SJE Lucas & T Mundel, Queenstown, International Society for Environmental Ergonomics, pp. 211-214.Google Scholar

  • Błażejczyk, K & Matzarakis, A 2007, ‘Assessment of bioclimatic differentiation of Poland based on the human heat balance’, Geographia Polonica, vol. 80, no. 1, pp. 63-82.Google Scholar

  • Błażejczyk, K & Twardosz, R 2010, ‘Long-Term Changes of Bioclimatic Conditions in Cracow (Poland)’, in The Polish Climate in the European Context: An Historical Overview, eds R Przybylak, R Majorowicz, J Brázdil & M Kejna, Springer, Science + Business Media B.V. pp. 235-246Google Scholar

  • Bröde, P, Fiala, D, Błażejczyk, K, Holmér, I, Jendritzky, G, Kampmann, B, Tinz, B & Havenith, G 2012, ‘Deriving the operational procedure for the Universal Thermal Climate Index (UTCI)’, Int J Biometeorol, vol. 56, pp. 481-494.Web of ScienceGoogle Scholar

  • Bröde, P, Błażejczyk, K, Fiala, D, Havenith, G, Holmér, I, Jendritzky, G, Kuklane, K &, Kampmann, B 2013, ‘The Universal Thermal Climate Index UTCI Compared to Ergonomics Standards for Assessing the Thermal Environment’, Industrial Health, vol. 51, no. 1, pp. 16-24.Google Scholar

  • Cheung, CSC & Hart, M 2012, ‘Climate change and thermal comfort in Hong Kong’, Int J Biometeorol, DOI.10.1007/ s00484-012-0608-9.Web of ScienceCrossrefGoogle Scholar

  • The ENSEMBLES project RT3, 2013. Available from: <http://ensemblesrt3.dmi.dk> [5 Oct. 2013].Google Scholar

  • Epstein, Y & Moran, DS 2006, ‘Thermal comfort and heat stress indices’, Indust Health, vol. 44, pp. 388-398.Google Scholar

  • European Climate Assessment & Dataset, 2013. Available from: <http://eca.knmi.nl/> [5 Oct. 2013].Google Scholar

  • Fiala, D, Havenith, G, Bröde, P, Kampmann, B & Jendritzky, G 2012, ‘UTCI-Fiala multi-node model of human heat transfer and temperature regulation’, Int J Biometeorol, vol. 56, pp. 429-441.Web of ScienceGoogle Scholar

  • Geiger, R 1969, ‘Topoclimates’, in World Survey of Climatology, vol. 2, General Climatology, 2, eds HE Landsberg & H Flohn, Elsevier Publishing Company Amsterdam-London-New York, pp. 105-138.Google Scholar

  • Heat-waves: risks and responses, 2004, Health and Global Environmental Change, SERIES, no. 2, WHO, Geneva.Google Scholar

  • ISO 7243 1989, ‘Hot environments; estimation of the heat stress on working man, based on the WBGT-index (wet bulb globe temperature)’, International Organisation for Standardisation, Geneva.Google Scholar

  • Jendritzky, G, Staiger, H, Bucher, K, Graetz, A & Laschewski, G 2011, ‘The perceived temperature. The method of the Deutscher Wetterdienst for the assessment of cold stress and heat load for the human body’, Deutscher Wetterdienst. Available from: <http://www.utci.org/isb/documents/perceived_temperature.pdf> [5 Oct. 2013].Google Scholar

  • Kampmann, B, Bröde, P & Fiala, D 2012, ‘Physiological responses to temperature and humidity compared to the assessment by UTCI, WGBT and PHS’, Int J Biometeorol, vol. 56, pp. 505-513.Web of ScienceGoogle Scholar

  • Kunert, A 2010, ‘Modeling of UTCI index in various types of landscape’, in Proceedings of the 7th Conference on Biometeorology, eds A Matzarakis, H Mayer & FM Chmielewski, Berichte des Meteorologischen Instituts der Albert-Ludwigs-Universität Freiburg, no. 20, pp. 302-307.Google Scholar

  • Lee, R 1978, Forest Microclimatology. Columbia University Press, New York.Google Scholar

  • Lemke, B & Kjellstrom, T 2012, ‘Calculating workplace WBGT from meteorological data. A tool for climate change assessment’, Industrial Health, vol. 50, pp. 267-278Web of ScienceGoogle Scholar

  • Liljegren, JC, Carhart, RA, Lawday, P, Tschopp, S & Sharp, R 2008, ‘Modeling the wet bulb globe temperature using standard meteorological measurements’, Journal of Occupational and Environmental Hygiene, vol. 5, pp. 645-655CrossrefGoogle Scholar

  • Liszewska, M, Konca-Kędzierska, K & Jakubiak, B 2012, ‘Opracowanie scenariuszy zmian klimatu dla Polski i wybranych regionów’, (Development of climate change scenarios for Poland and selected regions), Manuscript, Interdisciplinary Centre for Mathematical and Computational Modelling (ICM) of the University of Warsaw.Google Scholar

  • Masterson, J & Richardson, FA 1979, Humidex, a method of quantifying human discomfort due to excessive heat and humidity, Downsview, Ontario, Environment Canada.Google Scholar

  • Mayer, H & Höppe, P 1987, ‘Thermal comfort of man in different urban environments’, Theor Appl Climatol, vol. 38, pp. 43-49.Google Scholar

  • Milewski, P 2013, ‘Application of the UTCI to the local bioclimate of Poland’s Ziemia Kłodzka region’, Geographia Polonica, vol. 86, 1, pp. 47-54.Google Scholar

  • Oke, TR 1987, Boundary layer climates (second edition), Methuen, London‑New York.Google Scholar

  • Paszyński, J, Miara, K & Skoczek, J 1999, ‘Wymiana energii między atmosferą a podłożem jako podstawa kartowania topoklimatycznego’, (Energy exchange between atmosphere and earth surface as a basis of topoclimatic mapping), Dokumentacja Geograficzna, vol. 14.Google Scholar

  • Pickup, J & de Dear, R 2000, ‘An outdoor thermal comfort index (OUT_SET*) - Part I - The model and its assumptions’, in Biometeorology and urban climatology at the turn of the millenium. Selected papers from the conference ICBICUC’ 99, Sydney, [8-12 Nov. 1999], eds R de Dear, J Kalma, T Oke & A Auliciems, WMO, Geneva, WCASP-50, pp. 279-283.Google Scholar

  • PN-EN 27243 2005, ‘Środowiska gorące. Wyznaczanie obciążenia termicznego działającego na człowieka podczas pracy, oparte na wskaźniku WBGT’.Google Scholar

  • Rothfusz, LP 1990, The heat index equation, NWS Southern Region Technical Attachment, SR/SSD 90-23, Fort Worth, Texas.Google Scholar

  • Schulte, PA & Chun, HK 2009, ‘Climate change and occupational safety and health. Establishing a preliminary framework’, Journal of Occupational and Environmental Hygiene, vol. 6, pp. 542-554.Web of ScienceCrossrefGoogle Scholar

  • Special Report on Emissions Scenarios 2000, Cambridge University Press.Google Scholar

  • Steadman, RG 1984, ‘A universal scale of apparent temperature’, J Appl Meteorol Climatol, vol. 23, pp. 1674-1687.Google Scholar

  • WBGT index, 1991. Available from: <http://www.bom.gov.au/info/wbgt/wbgtrecs.shtml> [5 October 2013].Google Scholar

  • VDI (2008) ‘VDI Guideline 3787 / Part 2: Environmental meteorology: Methods for the human biometeorological evaluation of climate and air quality for urban and regional planning at regional level. Part I: Climate‘, VDI/DIN-Handbuch Reinhaltung der Luft, Band 1 B, Umweltmeteorologie, Beuth Verlag, Berlin.Google Scholar

  • Yaglou, CP & Minard, D 1957, ‘Control of heat casualties at military training centers’, Am Med Ass Arch Ind Hlth, vol. 16, pp. 302-316. Google Scholar

About the article

Published Online: 2014-03-31

Published in Print: 2014-03-01


Citation Information: Miscellanea Geographica - Regional Studies on Development, ISSN (Online) 2084-6118, DOI: https://doi.org/10.2478/mgrsd-2014-0011.

Export Citation

© 2014 by Krzysztof Błażejczyk. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Chuansi Gao, Kalev Kuklane, Per-Olof Östergren, and Tord Kjellstrom
International Journal of Biometeorology, 2017
[2]
Peter Bröde, Dusan Fiala, Bruno Lemke, and Tord Kjellstrom
International Journal of Biometeorology, 2017

Comments (0)

Please log in or register to comment.
Log in