Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Miscellanea Geographica

Regional Studies on Development

4 Issues per year

CiteScore 2016: 0.40

SCImago Journal Rank (SJR) 2016: 0.227
Source Normalized Impact per Paper (SNIP) 2016: 0.404

Covered by e.g. Web of Science Core Collection by Clarivate Analytics, and SCOPUS by Elsevier
14 points in the Ministerial journal value rating scale

Open Access
See all formats and pricing
More options …

Variability in spectral characteristics of trampled high-mountain grasslands

Marlena Kycko / Bogdan Zagajewski / Anna Kozłowska
  • Department of Geoecology and Climatology, Institute of Geography and Spatial Organization, Polish Academy of Sciences
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-06-17 | DOI: https://doi.org/10.2478/mgrsd-2014-0003


The goal of the paper is a presentation of field remote sensing methods for the analysis of the trampled plants of a highly protected mountain meadow ecosystem (M&B UNESCO Reserve and one of the most important Polish National Parks). The research area covers a core part of the Western Tatras - the Gąsienicowa Valley and Kasprowy Wierch summit, which are among the most visited destinations of the Polish Tatras. The research method is based on field hyperspectral measurements, using the ASD FieldSpec 3 spectrometer, on the dominant plant species of alpine swards. Sampling sites were located on trampled areas (next to trails) and reference plots, with the same species, but located more than 10 m from the trail (where the probability of trampling was very low, but the same composition of analysed plants). In each case, homogenous plots with a domination of one plant species were investigated. Based on the hyperspectral measurements, spectral characteristics as well as vegetation indices were analysed with the ANOVA statistical test. This indicated a varied resistance to trampling of the studied plant species. The analysis of vegetation indices enabled the selection of those groups which are the most useful for research into mountain vegetation condition: the broadband greenness group; the narrowband greenness group, measuring chlorophyll content and cell structure; and the canopy water content group. The results of the analyses show that vegetation of the High Tatras is characterised by optimal ranges of remote sensing indices. Only plants located nearest to the trails were in a worse condition (chlorophyll and water content was lower for the reference targets). These differences are statistically significant, but the measured values indicate a good condition of vegetation along trampled trails, within the range of optimum plant characteristics.

Keywords: Trampling; Tatra National Park; vegetation; hyperspectral measurements; ASD FieldSpec 3; mountain grasslands


  • Datt, B 1999. ‘A new reflectance index for remote sensing of chlorophyll content in higher plants. Tests using eucalyptus leaves’, Journal of Plant Physiology, vol. 154, pp. 30-36.Google Scholar

  • Fourty, T, Baret, F, Jacquemoud, F, Schmuck, G & Verdebout, J 1996, ‘Leaf optical properties with explicit description of its biochemical composition. Direct and inverse problems’, Remote Sensing of Environment, vol. 56, pp.104-117.Google Scholar

  • Gamon, JA, Peñuelas, J & Field, CB 1992, ‘A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency’, Remote Sensing of Environment, vol. 41, pp. 35-44.Google Scholar

  • Gao, BC 1995, ‘Normalized difference water index for remote sensing of vegetation liquid water from space’, Proceedings of SPIE, pp. 225-236.Google Scholar

  • Gao, BC 1996, ‘NDWI A normalized difference water index for remote sensing of vegetation liquid water from space’, Remote Sensing of Environment, vol. 58, pp. 257-266.CrossrefGoogle Scholar

  • Gitelson, AA & Merzlyak, M N 1994, ‘Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation’, Journal of Plant Physiology, vol. 143, pp. 286-292.Google Scholar

  • Gitelson, AA, Merzylak, MN & Chivkunowa, OB 2001, ‘Optical properties and nondestructive estimation of anthocyanin content in plant leaves’, Photochemistry and photobiology, vol. 71, pp.38-45.Google Scholar

  • Gitelson, AA, Zur, Y, Chivkunova, OB & Merzlyak, MN 2002, ‘Assessing carotenoid content in plant leaves with reflectance spectroscopy’, Photochemistry and Photobiology, vol. 75, pp. 272-281.Google Scholar

  • Grabherr, G 1982, ‘The impact of trampling by tourists on a high altitudinal grassland in the Tyrolean Alps’, Vegetatio, vol. 48, pp. 209-219.Google Scholar

  • Guzik, M 2001, Analiza zmian szaty roślinnej Tatr przy wykorzystaniu technik geomatycznych na przykładzie Doliny Bystrej i Suchej Stawiańskiej, Master Thesis, Faculty of Forestry of the University of Agriculture in Krakow.Google Scholar

  • Hardisky, MA, Klemas, V & Smart, RM 1983, ‘The influences of soil salinity, growth form, and leaf moisture on the spectral reflectance of Spartina alterniflora canopies’, Photogrammetric Engineering and Remote Sensing, vol. 49, pp. 77-83.Google Scholar

  • Huete, AR, Liu, H, Batchily, K & van Leeuwen, W 1997, ‘A comparison of vegetation indices over a global set of TM images for EOS-MODIS’, Remote Sensing of Environment, vol. 59, no. 3, pp. 440-451.CrossrefGoogle Scholar

  • Instytut Meteorologii i Gospodarki Wodnej, Klimat, Available from: < http://www.imgw.pl/klimat/>. [2 November 2013].Google Scholar

  • Kaufman, YJ & Tanre, D 1992, ‘Atmospherically resistant vegetation index (ARVI) for EOS-MODIS’, I.E.E.E. T geosci remote, vol. 30, no. 2, pp. 261-270.Google Scholar

  • Klug, B, Scharfetter-Lehrl, G & Scharfetter, E 2002, ‛Effects of trampling on vegetation above the timberline in the eastern Alps, Austria’, Arctic, Antarctic, and Alpine Research, vol. 34, no. 4, pp. 377-388.CrossrefGoogle Scholar

  • Kopcewicz, J & Lewak, S 2005, Fizjologia roślin, PWN, Warszawa, pp. 612-678.Google Scholar

  • Kozłowska, A 2006, ‘Detailed mapping of high-mountain vegetation in the Tatra Mts’, Polish Botanical Studies, vol. 22, pp. 333-341.Google Scholar

  • Kycko, M 2012, Wpływ turystyki na kondycję roślinności wzdłuż wybranych szlaków Doliny Gąsienicowej na podstawie danych teledetekcyjnych, Master thesis, Faculty of Geography and Regional Studiem, University of Warsaw.Google Scholar

  • Kycko, M, Zagajewski, B, Kozłowska, A & Oprządek M 2012, ‘Zróżnicowanie spektralne wybranych gatunków muraw wysokogórskich Doliny Gąsienicowej narażonych na wydeptywanie’, Teledetekcja Środowiska, vol. 47, pp. 75-86.Google Scholar

  • Merzlyak, JR, Gitelson, AA, Chivkunova, OB & Rakitin, VY 1999, ‘Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening’, Physiologia Plantarum, vol. 106, pp. 135-141.Google Scholar

  • Nagler, PL, Inoue, Y, Glenn, EP, Russ, AL & Daughtry, CST 2003, ‘Cellulose absorption index (CAI) to quantify mixed soil- plant litter scenes’, Remote Sensing of Environment, vol. 87, pp. 310-325.CrossrefGoogle Scholar

  • Peñuelas, J, Baret, F & Filella, I 1995, ‘Semi-empirical indices to assess carotenoids/chlorophyll-a ratio from leaf spectral reflectance’, Photosynthetica, vol. 31, pp. 221-230.Google Scholar

  • Peñuelas, J & Filella, I 1998, ‘Visible and near-infrared reflectance techniques for diagnosing plant physiological status’, Trends in Plant Science, vol. 4, no. 3, pp. 151-156.CrossrefGoogle Scholar

  • Piscová, V, Kanka, R, Krajčí, J & Barančok, P 2011, ‘Shortterm trampling experiments in the Juncetum trifidi Krajina 1933 association’, Ekológia (Bratislava), vol. 30, no. 3, pp. 322-333.Google Scholar

  • Rock, BN, Williams, DL & Vogehnann, JE 1985, ‘Field and airborne spectral characterization of suspected acid deposition damage in red spruce (Picea Rubens) form Vermont’, Machine processing of Remotely Sensed Data Symposium, Purdue University, Lafayette, IN, pp. 71-81.Google Scholar

  • Rouse, JW, Haas, RH, Schell, JA & Deering, DW 1973, ‘Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation’. Prog. RSC 1978-1, Remote Sensing Center, vol. 99.Google Scholar

  • Somsák, L, Kubíek, F, Háberová, L & Majzlánová, E 1979, ‘The influence of tourism upon the vegetation of the High Tatras’, Biologia (Bratislava), vol. 34, no. 7, pp. 571-582.Google Scholar

  • Tatrzański Park Narodowy, Poznaj, Available from: < http://tpn.pl/poznaj>. [2 November 2013] Vogelmann, JE, Rock, BN & Moss, DM 1993, ‘Red edge spectral measurements from sugar maple leaves’, International Journal of Remote Sensing, vol. 14, pp. 1563-1575.Google Scholar

  • Whinam, J & Chilcott, NM 2003, ‘Impact after four years of experimental trampling on alpine/sub-alpine envinronments in western Tasmania’, Journal of Environmental Management, vol. 67, pp. 339-351. Google Scholar

About the article

Received: 2013-09-03

Accepted: 2013-12-21

Published Online: 2014-06-17

Published in Print: 2014-06-01

Citation Information: Miscellanea Geographica, Volume 18, Issue 2, Pages 10–14, ISSN (Online) 2084-6118, DOI: https://doi.org/10.2478/mgrsd-2014-0003.

Export Citation

© by Marlena Kycko. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Marlena Kycko, Bogdan Zagajewski, Samantha Lavender, Elżbieta Romanowska, and Magdalena Zwijacz-Kozica
Remote Sensing, 2018, Volume 10, Number 2, Page 220
Bogdan Zagajewski, Hans Tømmervik, Jarle Bjerke, Edwin Raczko, Zbigniew Bochenek, Andrzej Kłos, Anna Jarocińska, Samantha Lavender, and Dariusz Ziółkowski
Remote Sensing, 2017, Volume 9, Number 12, Page 1289
Marlena Kycko, Bogdan Zagajewski, Magdalena Zwijacz-Kozica, Jerzy Cierniewski, Elżbieta Romanowska, Karolina Orłowska, Adrian Ochtyra, and Anna Jarocińska
Mountain Research and Development, 2017, Volume 37, Number 1, Page 66
Adriana Marcinkowska-Ochtyra, Bogdan Zagajewski, Adrian Ochtyra, Anna Jarocińska, Bronisław Wojtuń, Christian Rogass, Christian Mielke, and Samantha Lavender
International Journal of Remote Sensing, 2017, Volume 38, Number 7, Page 1839

Comments (0)

Please log in or register to comment.
Log in