Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Microalgae Biotechnology

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2300-3561
See all formats and pricing
More options …

Effects of centrifugal stress on cell disruption and glycerol leakage from Dunaliella salina

Y. Xu / J.J. Milledge / A. Abubakar / R.A.R. Swamy / D. Bailey / P.J. Harvey
Published Online: 2015-07-24 | DOI: https://doi.org/10.1515/micbi-2015-0003

Abstract

Dunaliella salina accumulates large amounts of intracellular glycerol in response to the increases in salt concentration, thus is a potential source for producing fuel grade glycerol as an alternative to biodiesel-derived crude glycerol. D. salina lacks a cell wall; therefore the mode of harvesting Dunaliella cells is critical to avoid cell disruption caused by extreme engineering conditions. This study explored cell disruption and glycerol leakage of D. salina under various centrifugal stresses during cell harvesting. Results show a centrifugal g-force lower than 5000 g caused little cell disruption, while a g-force higher than 9000 g led to ~40% loss of the intact cells and glycerol yields from the recovered algal pellets. Theoretical calculations of the centrifugal stresses that could rupture Dunaliella cells were in agreement with the experimental results, indicating optimisation of centrifugation conditions is important for recovering intact cells of D. salina enriched in glycerol.

Keywords: Dunaliella salina; microalgae; glycerol; centrifugation; disruption; harvesting

References

  • [1] Milledge J.J., Commercial application of microalgae other than as biofuels: A brief review, Rev. Environ. Sci. Biotechnol., 2011, 10, 31-41 CrossrefGoogle Scholar

  • [2] Vanthoor-Koopmans M., Wijffels R.H., Barbosa M.J., Eppink M.H.M., Biorefinery of microalgae for food and fuel, Biores. Technol., 2013, 135, 142-149 Google Scholar

  • [3] Milledge J.J., Heaven S., Methods of energy extraction from microalgal biomass: A review, Rev. Environ. Sci. Biotechnol., 2014, 13, 301-320 CrossrefGoogle Scholar

  • [4] Harvey P., Abubakar A.L., Xu Y., Bailey D., Milledge J.J., Swamy R., et al., The CO2 microalgae biorefinery: High value products from low value wastes using halophylic microalgae in the d-factory. Part1: Tackling cell harvesting in European Biomass Conference, Hamburg, 2014 Google Scholar

  • [5] Ben-Amotz A., Polle J.E.W., Subba Rao D.V., The alga Dunaliella: Biodiversity, physiology, genomics and biotechnology, Science Publishers, Enfleld NJ, 2009 Google Scholar

  • [6] Cowan A.K., Rose P.D., Horne L.G., Dunaliella-salina - a model system for studying the response of plant-cells to stress, J. Exp. Bot., 1992, 43, 1535-1547 CrossrefGoogle Scholar

  • [7] Goyal A., Osmoregulation in Dunaliella, part i: Effects of osmotic stress on photosynthesis, dark respiration and glycerol metabolism in Dunaliella tertiolecta and its salt-sensitive mutant (hl 25/8), Plant Physiol. Biochem., 2007, 45, 696-704 CrossrefGoogle Scholar

  • [8] Goyal A., Osmoregulation in Dunaliella, part ii: Photosynthesis and starch contribute carbon for glycerol synthesis during a salt stress in Dunaliella tertiolecta, Plant Physiol. Biochem., 2007, 45, 705-710 PubMedCrossrefGoogle Scholar

  • [9] Tan H.W., Abdul Aziz A.R., Aroua M.K., Glycerol production and its applications as a raw material: A review, Renew. Sustain. Energy Rev., 2013, 27, 118-127 CrossrefGoogle Scholar

  • [10] Harvey P.J., Psycha M., Kokossis A., Abubakar A.L., Trivedi V., Swamy R., et al., Glycerol production by halophytic microalgae: Strategy for producing industrial quantities in saline water in 20th European Biomass Conference and Exhibition, 85 - 90, 2012 Google Scholar

  • [11] Domalski E.S., Selected values of heat of combustion and heat of formation of organic compounds containing the elements C, H, N, O, P and S, J. Phy. Chem. Ref. Data, 1972, 1, 221-277 CrossrefGoogle Scholar

  • [12] Baghel R.S., Trivedi N., Gupta V., Neori A., Chennur R.R., Lali A.M., et al., Biorefining of marine macroalgal biomass for production of biofuel and commodity chemicals, Green Chem., 2015, CrossrefGoogle Scholar

  • [13] Greenwell H.C., Laurens L.M.L., Shields R.J., Lovitt R.W., Flynn K.J., Placing microalgae on the biofuels priority list: A review of the technological challenges, J. R. Soc. Interface, 2010, 7, 703-726 CrossrefGoogle Scholar

  • [14] Coons J.E., Kalb D.M., Dale T., Marrone B.L., Getting to low-cost algal biofuels: A monograph on conventional and cutting-edge harvesting and extraction technologies, Algal Res., 2014, 6, Part B, 250-270 CrossrefGoogle Scholar

  • [15] Mata T.M., Martins A.A., Caetano N.S., Microalgae for biodiesel production and other applications: A review, Renew. Sust. Energ. Rev., 2010, 14, 217-232 CrossrefGoogle Scholar

  • [16] Molina Grima E., Belarbi E.-H., Acien-Fernandez F.G., Robles- Medina A., Yusuf C., Recovery of microalgal biomass and metabolites: Process options and economics, Biotechnol. Adv., 2003, 20, 491-515 CrossrefPubMedGoogle Scholar

  • [17] Verma N.M., Mehrotra S., Shukla A., Mishra B.N., Prospective of biodiesel production utilizing microalgae as the cell factories: A comprehensive discussion, Afr. J. Biotechnol., 2010, 9, 1402-1411 Google Scholar

  • [18] Milledge J.J., Heaven S., A review of the harvesting of micro-algae for biofuel production, Rev. Environ. Sci. Biotech., 2013, 12, 165-178 CrossrefGoogle Scholar

  • [19] Chengala A.A., Hondzo M., Troolin D., Lefebvre P.A., Kinetic responses of Dunaliella in moving fluids, Biotech. Bioeng., 2010, 107, 65-75 CrossrefGoogle Scholar

  • [20] Zamalloa C., Vulsteke E., Albrecht J., Verstraete W., The technoeconomic potential of renewable energy through the anaerobic digestion of microalgae, Biores. Technol., 2011, 102, 1149-1158 CrossrefGoogle Scholar

  • [21] Zhu L.D., Hiltunen E., Antila E., Zhong J.J., Yuan Z.H., Wang Z.M., Microalgal biofuels: Flexible bioenergies for sustainable development, Renew. Sust. Energ. Rev., 2014, 30, 1035-1046 CrossrefGoogle Scholar

  • [22] Borowitzka M.A., Culturing of microalgae in outdoor ponds, in Anderse R.A. (Ed.), Algal culturing techniques, Elsevier, London, 2005 Google Scholar

  • [23] Peeler T.C., Stephenson M.B., Einspahr K.J., Thompson G.A., Lipid characterization of an enriched plasma-membrane fraction of Dunaliella salina grown in media of varying salinity, Plant Physiol., 1989, 89, 970-976 PubMedCrossrefGoogle Scholar

  • [24] Ben-Amotz A., Bio-fuel and CO2 capture by algae, NASA, 2008 Google Scholar

  • [25] Ben-Amotz A., Avron M., The biotechnology of mass culturing of Dunaliella for products of commercial interest, eds Cresswell R.C., Ress T.A.V., Shah N., Longman Scientifc and Technical Press, London, 90-114, 1989 Google Scholar

  • [26] Perry R.H., Chilton C.H., Chemical engineers’ handbook, McGraw Hill, Tokyo, Fifth Ed, 1973 Google Scholar

  • [27] Milledge J.J., Heaven S., Disc stack centrifugation separation and cell disruption of microalgae: A technical note, Environ. Nat. Resour. Res., 2011, 1, 17-24 Google Scholar

  • [28] Mannweiler K., Hoare M., The scale-down of an industrial disk stack centrifuge, Bioprocess Eng., 1992, 8, 19-25 CrossrefGoogle Scholar

  • [29] Axelsson H., Recent trends in disc bowl centrifuge development, Filtr. Sep., 2000, 37, 20-23 Google Scholar

  • [30] Silva H.J., Cortifas T., Ertola R.J., Effect of hydrodynamic stress on Dunaliella growth, J. Chem. Technol. Biotechnol., 1987, 40, 41-49 CrossrefGoogle Scholar

  • [31] Boychyn M., Yim S.S.S., Bulmer M., More J., Bracewell D.G., Hoare M., Performance prediction of industrial centrifuges using scale-down models, Bioprocess Biosyst. Eng., 2004, 26, 385-391 Google Scholar

  • [32] Garcia Camacho F., Gallardo Rodriguez J.J., Sanchez Miron A., Belarbi E.H., Chisti Y., Molina Grima E., Photobioreactor scale-up for a shear-sensitive dinoflagellate microalga, Process Biochem., 2011, 46, 936-944 CrossrefGoogle Scholar

  • [33] Johnson M.K., Johnson E.J., MacElroy R.D., Speer H.L., Bruff B.S., Effects of salts on the halophilic alga Dunaliella viridis, J. Bacteriol., 1968, 95, 1461-1468 Google Scholar

  • [34] Borowitzka M.A., Algal growth media and sources of cultures, Microalgal biotechnology, eds Borowitzka L.J., Borowitzka M.A., Cambridge University Press, Cambridge, 1988 Google Scholar

  • [35] Chen H., Lao Y.-M., Jiang J.-G., Effects of salinities on the gene expression of a (nad+)-dependent glycerol-3-phosphate dehydrogenase in Dunaliella salina, Sci. Total Environ., 2011, 409, 1291-1297 Google Scholar

  • [36] Lamers P.P., Metabolomics of carotenoids accumulation in Dunaliella salina, PhD, Wageningen University, 2011 Google Scholar

  • [37] Lin H.X., Fang L., Low C.S., Chow Y., Lee Y.K., Occurrence of glycerol uptake in Dunaliella tertiolecta under hyperosmotic stress, FEBS J., 2013, 280, 1064-1072 Google Scholar

  • [38] Chow Y.Y., Goh S.J., Su Z., Ng D.H., Lim C.Y., Lim N.Y., et al., Continual production of glycerol from carbon dioxide by Dunaliella tertiolecta, Bioresour. Technol., 2013, 136, 550-555 Google Scholar

  • [39] Boal D.H., Mechanics of the cell, Cambridge University Press, Cambridge ; New York, 2nd Ed, 2012 Google Scholar

  • [40] Preston G.M., Carroll T.P., Guggino W.B., Agre P., Appearance of water channels in xenopus oocytes expressing red cell chip28 protein, Science, 1992, 256, 385-387 Google Scholar

  • [41] Oliva R., Calamita G., Thornton J.M., Pellegrini-Calace M., Electrostatics of aquaporin and aquaglyceroporin channels correlates with their transport selectivity, Proc. Nat. Acad. Sci., 2010, 107, 4135-4140 Google Scholar

  • [42] Erickson H.P., Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy, Biological Procedures Online, 2009, 11, 32-51 PubMedGoogle Scholar

  • [43] Carpita N.C., Tensile-strength of cell-walls of living cells, Plant Physiol., 1985, 79, 485-488 CrossrefPubMedGoogle Scholar

  • [44] Hibbeler R.C., Fan S.C., Mechanics of materials, Prentice Hall, Singapore, 8th ed. in SI units Ed, 2012 Google Scholar

  • [45] Peperzak L., Colijn F., Koeman R., Gieskes W.W.C., Joordens J.C.A., Phytoplankton sinking rates in the rhine region of freshwater influence, J. Plankton Res., 2003, 25, 365-383 CrossrefGoogle Scholar

  • [46] Smayda T.J., The suspension and sinking of phytoplankton in the sea, in Barnes H. (Ed.), Oceanography and marine biology annual review, George Allen & Unwin, London, Vol 8, 353-414, 1970 Google Scholar

  • [47] Sournia A. ed, Phytoplankton manual, UNESCO, Paris, 1978 Google Scholar

  • [48] Kestin J., Sokolov M., Wakeham W.A., Viscosity of liquid water in the range -8 to 150 °C, J. Phys. Chem. Ref. Data, 1978, 7, 941-948 Google Scholar

  • [49] Kromkamp J., Walsby A.E., A computer-model of buoyancy and vertical migration in cyanobacteria, J. Plankton Res., 1990, 12, 161-183 CrossrefGoogle Scholar

  • [50] Van Lerland E.T., Peperzak L., Separation of marine seston and density determination of marine diatoms by density gradient centrifugation, J. Plankton Res., 1984, 6, 29-44 CrossrefGoogle Scholar

  • [51] Millero F.J., Lepple F.K., The density and expansibility of artificial seawater solutions from 0 to 40°C and 0 to 21 chlorinity, Marine Chem., 1973, 1, 89-104 Google Scholar

  • [52] El-Dessouky H.T., Ettouney H.M., Fundamentals of salt water desalination Elsevier, Amsterdam, 2002 Google Scholar

  • [53] Harrison R.D., Book of data, Nuffield Advanced Science, 1972 Google Scholar

  • [54] Lowe S.A., Omission of critical Reynolds number for open channel flows in many textbooks, J. Professional Iss. Eng. Edu. Practice, 2003, 129, 58-59 Google Scholar

  • [55] Coulson J.M., Richardson J.F., Coulson & Richardson’s chemical engineering . Fluid flow, heat transfer and mass transfer, Elsevier, Oxford, 6 Ed, 1999 Google Scholar

About the article

Received: 2014-10-06

Accepted: 2015-05-05

Published Online: 2015-07-24


Citation Information: Microalgae Biotechnology, ISSN (Online) 2300-3561, DOI: https://doi.org/10.1515/micbi-2015-0003.

Export Citation

©2015 Y. Xu et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
N. F. Santos-Sánchez, R. Valadez-Blanco, B. Hernández-Carlos, A. Torres-Ariño, P. C. Guadarrama-Mendoza, and R. Salas-Coronado
Applied Microbiology and Biotechnology, 2016, Volume 100, Number 20, Page 8667
[2]
Yanan Xu, Iskander M. Ibrahim, and Patricia J. Harvey
Plant Physiology and Biochemistry, 2016, Volume 106, Page 305

Comments (0)

Please log in or register to comment.
Log in