Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Non-coding RNAs in Endocrinology

Ed. by Hardikar, Anandwardhan

1 Issue per year

Emerging Science

Open Access
See all formats and pricing
More options …

From Cradle to the Grave: Tissue-specific microRNA signatures in detecting clinical progression of diabetes

Ryan Farr
  • Diabetes and Islet biology Group, NHMRC Clinical Trials Centre, Faculty of Medicine, The University of Sydney, Level 6, Medical Foundation Building, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Caroline J. Taylor / Sarang N. Satoor
  • Diabetes and Islet biology Group, NHMRC Clinical Trials Centre, Faculty of Medicine, The University of Sydney, Level 6, Medical Foundation Building, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michael D. Williams
  • Diabetes and Islet biology Group, NHMRC Clinical Trials Centre, Faculty of Medicine, The University of Sydney, Level 6, Medical Foundation Building, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mugdha V. Joglekar
  • Corresponding author
  • Diabetes and Islet biology Group, NHMRC Clinical Trials Centre, Faculty of Medicine, The University of Sydney, Level 6, Medical Foundation Building, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
  • OBI-ACU Centre, O’Brien Institute, 42 Fitzroy Street, Fitzroy, VIC, 3065, Australia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-07-26 | DOI: https://doi.org/10.2478/micrnado-2013-0004


Ever since the discovery of small non-coding RNAs, microRNAs have been identified to play a critical role in development and function of pancreatic insulin-producing beta cells. Research carried out until now demonstrates that microRNAs can specifically target key pancreatic transcription factors and signalling molecules. This in turn may influence changes in insulin production and secretion. microRNAs are also identified in insulin target organs that are altered as a result of hyperglycemia and insulin resistance. Recent studies demonstrate that microRNAs are not only confined to cells but are also detected in biological fluids including serum, plasma and urine. These data indicate that miRNAs may be looked upon having a dual role, as biomarkers and as regulators of disease. We review the existing literature in understanding the role of microRNAs in development, function and death of pancreatic beta cells as well as in the development of metabolic disease. We discuss the possible mechanisms that contribute to identifying the role of microRNAs as sensitive and efficient biomarkers to predict the progression of diabetes. Understanding tissue-specific microRNA signatures and their role as a cause or effect of diabetes would provide more information on progression of this disease.

Keywords: Circulating microRNAs; Biomarkers; Metabolic disease


  • [1] Lee R.C., Feinbaum R.L., and Ambros V., The c. Elegans heterochronic gene lin-4 encodes small rnas with antisense complementarity to lin-14. Cell, 1993. 75(5): p. 843-54.CrossrefGoogle Scholar

  • [2] Kozomara A. and Griffiths-Jones S., Mirbase: Integrating microrna annotation and deep-sequencing data. Nucleic Acids Res, 2011. 39(Database issue): p. D152-7.CrossrefGoogle Scholar

  • [3] Bartel D.P., Micrornas: Genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281-97.CrossrefGoogle Scholar

  • [4] Lagos-Quintana M., Rauhut R., Meyer J., Borkhardt A., and Tuschl T., New micrornas from mouse and human. RNA, 2003. 9(2): p. 175-9.CrossrefGoogle Scholar

  • [5] Lee Y., Kim M., Han J., Yeom K.H., Lee S., Baek S.H., et al., Microrna genes are transcribed by rna polymerase ii. EMBO J, 2004. 23(20): p. 4051-60.CrossrefGoogle Scholar

  • [6] Lee Y., Ahn C., Han J., Choi H., Kim J., Yim J., et al., The nuclear rnase iii drosha initiates microrna processing. Nature, 2003. 425(6956): p. 415-9.Google Scholar

  • [7] Lund E., Guttinger S., Calado A., Dahlberg J.E., and Kutay U., Nuclear export of microrna precursors. Science, 2004. 303(5654): p. 95-8.Google Scholar

  • [8] Hutvagner G., McLachlan J., Pasquinelli A.E., Balint E., Tuschl T., and Zamore P.D., A cellular function for the rnainterference enzyme dicer in the maturation of the let-7 small temporal rna. Science, 2001. 293(5531): p. 834-8.Google Scholar

  • [9] Khvorova A., Reynolds A., and Jayasena S.D., Functional sirnas and mirnas exhibit strand bias. Cell, 2003. 115(2): p. 209-16.CrossrefGoogle Scholar

  • [10] Schwarz D.S., Hutvagner G., Du T., Xu Z., Aronin N., and Zamore P.D., Asymmetry in the assembly of the rnai enzyme complex. Cell, 2003. 115(2): p. 199-208.CrossrefGoogle Scholar

  • [11] Ambros V., The functions of animal micrornas. Nature, 2004. 431(7006): p. 350-5.Google Scholar

  • [12] He L. and Hannon G.J., Micrornas: Small rnas with a big role in gene regulation. Nat Rev Genet, 2004. 5(7): p. 522-31.CrossrefGoogle Scholar

  • [13] Krek A., Grun D., Poy M.N., Wolf R., Rosenberg L., Epstein E.J., et al., Combinatorial microrna target predictions. Nat Genet, 2005. 37(5): p. 495-500.CrossrefGoogle Scholar

  • [14] Chen X., Ba Y., Ma L., Cai X., Yin Y., Wang K., et al., Characterization of micrornas in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res, 2008. 18(10): p. 997-1006.CrossrefGoogle Scholar

  • [15] Mitchell P.S., Parkin R.K., Kroh E.M., Fritz B.R., Wyman S.K., Pogosova-Agadjanyan E.L., et al., Circulating micrornas as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A, 2008. 105(30): p. 10513-8.CrossrefGoogle Scholar

  • [16] Weber J.A., Baxter D.H., Zhang S., Huang D.Y., Huang K.H., Lee M.J., et al., The microrna spectrum in 12 body fluids. Clin Chem, 2010. 56(11): p. 1733-41.CrossrefGoogle Scholar

  • [17] Wang G., Tam L.S., Li E.K., Kwan B.C., Chow K.M., Luk C.C., et al., Serum and urinary free microrna level in patients with systemic lupus erythematosus. Lupus, 2011. 20(5): p. 493-500.CrossrefGoogle Scholar

  • [18] Yamada Y., Enokida H., Kojima S., Kawakami K., Chiyomaru T., Tatarano S., et al., Mir-96 and mir-183 detection in urine serve as potential tumor markers of urothelial carcinoma: Correlation with stage and grade, and comparison with urinary cytology. Cancer Sci, 2011. 102(3): p. 522-9.CrossrefGoogle Scholar

  • [19] Li J.M., Zhao R.H., Li S.T., Xie C.X., Jiang H.H., Ding W.J., et al., Down-regulation of fecal mir-143 and mir-145 as potential markers for colorectal cancer. Saudi Med J, 2012. 33(1): p. 24-9.Google Scholar

  • [20] Link A., Balaguer F., Shen Y., Nagasaka T., Lozano J.J., Boland C.R., et al., Fecal micrornas as novel biomarkers for colon cancer screening. Cancer Epidemiol Biomarkers Prev, 2010. 19(7): p. 1766-74.CrossrefGoogle Scholar

  • [21] Liu C.J., Lin S.C., Yang C.C., Cheng H.W., and Chang K.W., Exploiting salivary mir-31 as a clinical biomarker of oral squamous cell carcinoma. Head Neck, 2012. 34(2): p. 219-24.CrossrefGoogle Scholar

  • [22] Park N.J., Zhou H., Elashoff D., Henson B.S., Kastratovic D.A., Abemayor E., et al., Salivary microrna: Discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res, 2009. 15(17): p. 5473-7. CrossrefGoogle Scholar

  • [23] Zhou Q., Li M., Wang X., Li Q., Wang T., Zhu Q., et al., Immune-related micrornas are abundant in breast milk exosomes. Int J Biol Sci, 2012. 8(1): p. 118-23.CrossrefGoogle Scholar

  • [24] Bernstein E., Kim S.Y., Carmell M.A., Murchison E.P., Alcorn H., Li M.Z., et al., Dicer is essential for mouse development. Nat Genet, 2003. 35(3): p. 215-7.CrossrefGoogle Scholar

  • [25] Fukasawa M., Morita S., Kimura M., Horii T., Ochiya T., and Hatada I., Genomic imprinting in dicer1-hypomorphic mice. Cytogenet Genome Res, 2006. 113(1-4): p. 138-43.Google Scholar

  • [26] Lynn F.C., Skewes-Cox P., Kosaka Y., McManus M.T., Harfe B.D., and German M.S., Microrna expression is required for pancreatic islet cell genesis in the mouse. Diabetes, 2007. 56(12): p. 2938-45.CrossrefGoogle Scholar

  • [27] Morita S., Hara A., Kojima I., Horii T., Kimura M., Kitamura T., et al., Dicer is required for maintaining adult pancreas. PLoS One, 2009. 4(1): p. e4212.CrossrefGoogle Scholar

  • [28] Poy M.N., Eliasson L., Krutzfeldt J., Kuwajima S., Ma X., Macdonald P.E., et al., A pancreatic islet-specific microrna regulates insulin secretion. Nature, 2004. 432(7014): p. 226-30.Google Scholar

  • [29] Zhao X., Mohan R., Ozcan S., and Tang X., Microrna-30d induces insulin transcription factor mafa and insulin production by targeting mitogen-activated protein 4 kinase 4 (map4k4) in pancreatic beta-cells. J Biol Chem, 2012. 287(37): p. 31155-64.Google Scholar

  • [30] Tang X., Muniappan L., Tang G., and Ozcan S., Identification of glucose-regulated mirnas from pancreatic {beta} cells reveals a role for mir-30d in insulin transcription. RNA, 2009. 15(2): p. 287-93.Google Scholar

  • [31] Plaisance V., Abderrahmani A., Perret-Menoud V., Jacquemin P., Lemaigre F., and Regazzi R., Microrna-9 controls the expression of granuphilin/slp4 and the secretory response of insulin-producing cells. J Biol Chem, 2006. 281(37): p. 26932-42.Google Scholar

  • [32] Ramachandran D., Roy U., Garg S., Ghosh S., Pathak S., and Kolthur-Seetharam U., Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic beta-islets. FEBS J, 2011. 278(7): p. 1167-74.Google Scholar

  • [33] Kloosterman W.P., Lagendijk A.K., Ketting R.F., Moulton J.D., and Plasterk R.H., Targeted inhibition of mirna maturation with morpholinos reveals a role for mir-375 in pancreatic islet development. PLoS Biol, 2007. 5(8): p. e203.CrossrefGoogle Scholar

  • [34] Joglekar M.V., Joglekar V.M., and Hardikar A.A., Expression of islet-specific micrornas during human pancreatic development. Gene Expr Patterns, 2009. 9(2): p. 109-13.CrossrefGoogle Scholar

  • [35] Nieto M., Hevia P., Garcia E., Klein D., Alvarez-Cubela S., Bravo-Egana V., et al., Anti sense mir-7 impairs insulin expression in developing pancreas and in cultured pancreatic buds. Cell Transplant, 2011.Google Scholar

  • [36] Wang Y., Liu J., Liu C., Naji A., and Stoffers D.A., Microrna-7 regulates the mtor pathway and proliferation in adult pancreatic beta-cells. Diabetes, 2013. 62(3): p. 887-95.CrossrefGoogle Scholar

  • [37] Jacovetti C., Abderrahmani A., Parnaud G., Jonas J.C., Peyot M.L., Cornu M., et al., Micrornas contribute to compensatory beta cell expansion during pregnancy and obesity. J Clin Invest, 2012. 122(10): p. 3541-51 CrossrefGoogle Scholar

  • [54] Winbanks C.E., Wang B., Beyer C., Koh P., White L., Kantharidis P., et al., Tgf-beta regulates mir-206 and mir-29 to control myogenic differentiation through regulation of hdac4. J Biol Chem, 2011. 286(16): p. 13805-14.Google Scholar

  • [55] Horie T., Ono K., Nishi H., Iwanaga Y., Nagao K., Kinoshita M., et al., Microrna-133 regulates the expression of glut4 by targeting klf15 and is involved in metabolic control in cardiac myocytes. Biochem Biophys Res Commun, 2009. 389(2): p. 315-20.Google Scholar

  • [56] Yu X.Y., Song Y.H., Geng Y.J., Lin Q.X., Shan Z.X., Lin S.G., et al., Glucose induces apoptosis of cardiomyocytes via microrna-1 and igf-1. Biochem Biophys Res Commun, 2008. 376(3): p. 548-52.CrossrefGoogle Scholar

  • [57] Elia L., Contu R., Quintavalle M., Varrone F., Chimenti C., Russo M.A., et al., Reciprocal regulation of microrna-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation, 2009. 120(23): p. 2377-85.CrossrefGoogle Scholar

  • [58] Herrera B.M., Lockstone H.E., Taylor J.M., Ria M., Barrett A., Collins S., et al., Global microrna expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia, 2010. 53(6): p. 1099-109.CrossrefGoogle Scholar

  • [59] Huang B., Qin W., Zhao B., Shi Y., Yao C., Li J., et al., Microrna expression profiling in diabetic gk rat model. Acta Biochim Biophys Sin (Shanghai), 2009. 41(6): p. 472-7.Google Scholar

  • [60] He A., Zhu L., Gupta N., Chang Y., and Fang F., Overexpression of micro ribonucleic acid 29, highly upregulated in diabetic rats, leads to insulin resistance in 3t3-l1 adipocytes. Mol Endocrinol, 2007. 21(11): p. 2785-94.Google Scholar

  • [61] Tsuura Y., Ishida H., Okamoto Y., Kato S., Sakamoto K., Horie M., et al., Glucose sensitivity of atp-sensitive k+ channels is impaired in beta-cells of the gk rat. A new genetic model of niddm. Diabetes, 1993. 42(10): p. 1446-53.CrossrefGoogle Scholar

  • [62] Zhang Y., Yang L., Gao Y.F., Fan Z.M., Cai X.Y., Liu M.Y., et al., Microrna-106b induces mitochondrial dysfunction and insulin resistance in c2c12 myotubes by targeting mitofusin-2. Mol Cell Endocrinol, 2013. 381(1-2): p. 230-40.Google Scholar

  • [63] Granjon A., Gustin M.P., Rieusset J., Lefai E., Meugnier E., Guller I., et al., The microrna signature in response to insulin reveals its implication in the transcriptional action of insulin in human skeletal muscle and the role of a sterol regulatory element-binding protein-1c/myocyte enhancer factor 2c pathway. Diabetes, 2009. 58(11): p. 2555-64.Google Scholar

  • [64] Gallagher I.J., Scheele C., Keller P., Nielsen A.R., Remenyi J., Fischer C.P., et al., Integration of microrna changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes. Genome Med, 2010. 2(2): p. 9.CrossrefGoogle Scholar

  • [65] Esau C., Kang X., Peralta E., Hanson E., Marcusson E.G., Ravichandran L.V., et al., Microrna-143 regulates adipocyte differentiation. J Biol Chem, 2004. 279(50): p. 52361-5.Google Scholar

  • [66] Xie H., Lim B., and Lodish H.F., Micrornas induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes, 2009. 58(5): p. 1050-7.CrossrefGoogle Scholar

  • [67] Jordan S.D., Kruger M., Willmes D.M., Redemann N., Wunderlich F.T., Bronneke H.S., et al., Obesity-induced overexpression of mirna-143 inhibits insulin-stimulated akt activation and impairs glucose metabolism. Nat Cell Biol, 2011. 13(4): p. 434-46.CrossrefGoogle Scholar

  • [68] Sekine S., Ogawa R., Ito R., Hiraoka N., McManus M.T., Kanai Y., et al., Disruption of dicer1 induces dysregulated fetal gene expression and promotes hepatocarcinogenesis. Gastroenterology, 2009. 136(7): p. 2304-2315 e1-4.Google Scholar

  • [69] Chang J., Nicolas E., Marks D., Sander C., Lerro A., Buendia M.A., et al., Mir-122, a mammalian liver-specific microrna, is processed from hcr mrna and may downregulate the high affinity cationic amino acid transporter cat-1. RNA Biol, 2004. 1(2): p. 106-13.Google Scholar

  • [70] Esau C., Davis S., Murray S.F., Yu X.X., Pandey S.K., Pear M., et al., Mir-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab, 2006. 3(2): p. 87-98.CrossrefGoogle Scholar

  • [71] Herrera B.M., Lockstone H.E., Taylor J.M., Wills Q.F., Kaisaki P.J., Barrett A., et al., Microrna-125a is over-expressed in insulin target tissues in a spontaneous rat model of type 2 diabetes. BMC Med Genomics, 2009. 2: p. 54.CrossrefGoogle Scholar

  • [72] Li S., Chen X., Zhang H., Liang X., Xiang Y., Yu C., et al., Differential expression of micrornas in mouse liver under aberrant energy metabolic status. J Lipid Res, 2009. 50(9): p. 1756-65.CrossrefGoogle Scholar

  • [73] Zhao E., Keller M.P., Rabaglia M.E., Oler A.T., Stapleton D.S., Schueler K.L., et al., Obesity and genetics regulate micrornas in islets, liver, and adipose of diabetic mice. Mamm Genome, 2009. 20(8): p. 476-85.CrossrefGoogle Scholar

  • [74] Davalos A., Goedeke L., Smibert P., Ramirez C.M., Warrier N.P., Andreo U., et al., Mir-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A, 2011. 108(22): p. 9232-7.CrossrefGoogle Scholar

  • [75] Ryu H.S., Park S.Y., Ma D., Zhang J., and Lee W., The induction of microrna targeting irs-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes. PLoS One, 2011. 6(3): p. e17343.Google Scholar

  • [76] Shi B., Sepp-Lorenzino L., Prisco M., Linsley P., deAngelis T., and Baserga R., Micro rna 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. J Biol Chem, 2007. 282(45): p. 32582-90.Google Scholar

  • [77] Liang J., Liu C., Qiao A., Cui Y., Zhang H., Cui A., et al., Microrna-29a-c decrease fasting blood glucose levels by negatively regulating hepatic gluconeogenesis. J Hepatol, 2013. 58(3): p. 535-42.CrossrefGoogle Scholar

  • [78] Tian R. and Abel E.D., Responses of glut4-deficient hearts to ischemia underscore the importance of glycolysis. Circulation, 2001. 103(24): p. 2961-6.CrossrefGoogle Scholar

  • [79] Lu H., Buchan R.J., and Cook S.A., Microrna-223 regulates glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res, 2010. 86(3): p. 410-20.Google Scholar

  • [80] Grueter C.E., van Rooij E., Johnson B.A., DeLeon S.M., Sutherland L.B., Qi X., et al., A cardiac microrna governs systemic energy homeostasis by regulation of med13. Cell, 2012. 149(3): p. 671-83. CrossrefGoogle Scholar

  • [81] van Rooij E., Sutherland L.B., Qi X., Richardson J.A., Hill J., and Olson E.N., Control of stress-dependent cardiac growth and gene expression by a microrna. Science, 2007. 316(5824): p. 575-9.Google Scholar

  • [82] Mallat Y., Tritsch E., Ladouce R., Winter D.L., Friguet B., Li Z., et al., Proteome modulation in h9c2 cardiac cells by mir-378 and mir-378*. Molecular & Cellular Proteomics, 2013.Google Scholar

  • [83] Taylor D.D. and Gercel-Taylor C., Microrna signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol, 2008. 110(1): p. 13-21.CrossrefGoogle Scholar

  • [84] Rabinowits G., Gercel-Taylor C., Day J.M., Taylor D.D., and Kloecker G.H., Exosomal microrna: A diagnostic marker for lung cancer. Clin Lung Cancer, 2009. 10(1): p. 42-6.CrossrefGoogle Scholar

  • [85] Skog J., Wurdinger T., van Rijn S., Meijer D.H., Gainche L., Sena-Esteves M., et al., Glioblastoma microvesicles transport rna and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol, 2008. 10(12): p. 1470-6.CrossrefGoogle Scholar

  • [86] Yang M., Chen J., Su F., Yu B., Lin L., Liu Y., et al., Microvesicles secreted by macrophages shuttle invasionpotentiating micrornas into breast cancer cells. Mol Cancer, 2011. 10: p. 117.CrossrefGoogle Scholar

  • [87] Valenti R., Huber V., Iero M., Filipazzi P., Parmiani G., and Rivoltini L., Tumor-released microvesicles as vehicles of immunosuppression. Cancer Res, 2007. 67(7): p. 2912-5.CrossrefGoogle Scholar

  • [88] Baj-Krzyworzeka M., Szatanek R., Weglarczyk K., Baran J., and Zembala M., Tumour-derived microvesicles modulate biological activity of human monocytes. Immunol Lett, 2007. 113(2): p. 76-82.Google Scholar

  • [89] van Niel G., Porto-Carreiro I., Simoes S., and Raposo G., Exosomes: A common pathway for a specialized function. J Biochem, 2006. 140(1): p. 13-21.CrossrefGoogle Scholar

  • [90] Arroyo J.D., Chevillet J.R., Kroh E.M., Ruf I.K., Pritchard C.C., Gibson D.F., et al., Argonaute2 complexes carry a population of circulating micrornas independent of vesicles in human plasma. Proc Natl Acad Sci U S A, 2011. 108(12): p. 5003-8.CrossrefGoogle Scholar

  • [91] Lim P.K., Bliss S.A., Patel S.A., Taborga M., Dave M.A., Gregory L.A., et al., Gap junction-mediated import of microrna from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res, 2011. 71(5): p. 1550-60.CrossrefGoogle Scholar

  • [92] Mittelbrunn M., Gutierrez-Vazquez C., Villarroya-Beltri C., Gonzalez S., Sanchez-Cabo F., Gonzalez M.A., et al., Unidirectional transfer of microrna-loaded exosomes from t cells to antigen-presenting cells. Nat Commun, 2011. 2: p. 282.CrossrefGoogle Scholar

  • [93] Montecalvo A., Larregina A.T., Shufesky W.J., Stolz D.B., Sullivan M.L., Karlsson J.M., et al., Mechanism of transfer of functional micrornas between mouse dendritic cells via exosomes. Blood, 2012. 119(3): p. 756-66.CrossrefGoogle Scholar

  • [94] Ji X., Takahashi R., Hiura Y., Hirokawa G., Fukushima Y., and Iwai N., Plasma mir-208 as a biomarker of myocardial injury. Clin Chem, 2009. 55(11): p. 1944-9. CrossrefGoogle Scholar

  • [95] Zen K. and Zhang C.Y., Circulating micrornas: A novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev, 2012. 32(2): p. 326-48.CrossrefGoogle Scholar

  • [96] Huang L., Lin J.X., Yu Y.H., Zhang M.Y., Wang H.Y., and Zheng M., Downregulation of six micrornas is associated with advanced stage, lymph node metastasis and poor prognosis in small cell carcinoma of the cervix. PLoS One, 2012. 7(3): p. e33762.CrossrefGoogle Scholar

  • [97] Lu Y., Govindan R., Wang L., Liu P.Y., Goodgame B., Wen W., et al., Microrna profiling and prediction of recurrence/ relapse-free survival in stage i lung cancer. Carcinogenesis, 2012.CrossrefGoogle Scholar

  • [98] Ai J., Zhang R., Li Y., Pu J., Lu Y., Jiao J., et al., Circulating microrna-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun, 2010. 391(1): p. 73-7.Google Scholar

  • [99] Wang G.K., Zhu J.Q., Zhang J.T., Li Q., Li Y., He J., et al., Circulating microrna: A novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J, 2010. 31(6): p. 659-66.CrossrefGoogle Scholar

  • [100] Long Q., Johnson B.A., Osunkoya A.O., Lai Y.H., Zhou W., Abramovitz M., et al., Protein-coding and microrna biomarkers of recurrence of prostate cancer following radical prostatectomy. Am J Pathol, 2011. 179(1): p. 46-54.CrossrefGoogle Scholar

  • [101] Tetzlaff M.T., Liu A., Xu X., Master S.R., Baldwin D.A., Tobias J.W., et al., Differential expression of mirnas in papillary thyroid carcinoma compared to multinodular goiter using formalin fixed paraffin embedded tissues. Endocr Pathol, 2007. 18(3): p. 163-73.CrossrefGoogle Scholar

  • [102] Git A., Dvinge H., Salmon-Divon M., Osborne M., Kutter C., Hadfield J., et al., Systematic comparison of microarray profiling, real-time pcr, and next-generation sequencing technologies for measuring differential microrna expression. RNA, 2010. 16(5): p. 991-1006.CrossrefGoogle Scholar

  • [103] Nelson P.T., Wang W.X., Wilfred B.R., and Tang G., Technical variables in high-throughput mirna expression profiling: Much work remains to be done. Biochim Biophys Acta, 2008. 1779(11): p. 758-65.Google Scholar

  • [104] Willenbrock H., Salomon J., Sokilde R., Barken K.B., Hansen T.N., Nielsen F.C., et al., Quantitative mirna expression analysis: Comparing microarrays with next-generation sequencing. RNA, 2009. 15(11): p. 2028-34.CrossrefGoogle Scholar

  • [105] Karolina D.S., Armugam A., Tavintharan S., Wong M.T., Lim S.C., Sum C.F., et al., Microrna 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One, 2011. 6(8): p. e22839.CrossrefGoogle Scholar

  • [106] Zampetaki A., Kiechl S., Drozdov I., Willeit P., Mayr U., Prokopi M., et al., Plasma microrna profiling reveals loss of endothelial mir-126 and other micrornas in type 2 diabetes. Circ Res, 2010. 107(6): p. 810-7.CrossrefGoogle Scholar

  • [107] Kong L., Zhu J., Han W., Jiang X., Xu M., Zhao Y., et al., Significance of serum micrornas in pre-diabetes and newly diagnosed type 2 diabetes: A clinical study. Acta Diabetol, 2011. 48(1): p. 61-9. CrossrefGoogle Scholar

  • [108] Karolina D.S., Tavintharan S., Armugam A., Sepramaniam S., Pek S.L., Wong M.T., et al., Circulating mirna profiles in patients with metabolic syndrome. J Clin Endocrinol Metab, 2012. 97(12): p. E2271-6.CrossrefGoogle Scholar

  • [109] Erener S., Mojibian M., Fox J.K., Denroche H.C., and Kieffer T.J., Circulating mir-375 as a biomarker of beta-cell death and diabetes in mice. Endocrinology, 2013. 154(2): p. 603-8.CrossrefGoogle Scholar

  • [110] Nielsen L.B., Wang C., Sorensen K., Bang-Berthelsen C.H., Hansen L., Andersen M.L., et al., Circulating levels of microrna from children with newly diagnosed type 1 diabetes and healthy controls: Evidence that mir-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res, 2012. 2012: p. 896362.Google Scholar

  • [111] Salas-Perez F., Codner E., Valencia E., Pizarro C., Carrasco E., and Perez-Bravo F., Micrornas mir-21a and mir-93 are down regulated in peripheral blood mononuclear cells (pbmcs) from patients with type 1 diabetes. Immunobiology, 2013. 218(5): p. 733-7.CrossrefGoogle Scholar

  • [112] Sebastiani G., Grieco F.A., Spagnuolo I., Galleri L., Cataldo D., and Dotta F., Increased expression of microrna mir-326 in type 1 diabetic patients with ongoing islet autoimmunity. Diabetes Metab Res Rev, 2011. 27(8): p. 862-6.CrossrefGoogle Scholar

  • [113] Neal C.S., Michael M.Z., Pimlott L.K., Yong T.Y., Li J.Y., and Gleadle J.M., Circulating microrna expression is reduced in chronic kidney disease. Nephrol Dial Transplant, 2011. 26(11): p. 3794-802.CrossrefGoogle Scholar

  • [114] Wang N., Zhou Y., Jiang L., Li D., Yang J., Zhang C.Y., et al., Urinary microrna-10a and microrna-30d serve as novel, sensitive and specific biomarkers for kidney injury. PLoS One, 2012. 7(12): p. e51140.Google Scholar

  • [115] van Balkom B.W., Pisitkun T., Verhaar M.C., and Knepper M.A., Exosomes and the kidney: Prospects for diagnosis and therapy of renal diseases. Kidney Int, 2011. 80(11): p. 1138-45.CrossrefGoogle Scholar

  • [116] Argyropoulos C., Wang K., McClarty S., Huang D., Bernardo J., Ellis D., et al., Urinary microrna profiling in the nephropathy of type 1 diabetes. PLoS One, 2013. 8(1): p. e54662.CrossrefGoogle Scholar

  • [117] Natarajan R., Putta S., and Kato M., Micrornas and diabetic complications. J Cardiovasc Transl Res, 2012. 5(4): p. 413-22.CrossrefGoogle Scholar

  • [118] Kantharidis P., Wang B., Carew R.M., and Lan H.Y., Diabetes complications: The microrna perspective. Diabetes, 2011. 60(7): p. 1832-7.CrossrefGoogle Scholar

  • [119] Wang X.H., Qian R.Z., Zhang W., Chen S.F., Jin H.M., and Hu R.M., Microrna-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clin Exp Pharmacol Physiol, 2009. 36(2): p. 181-8.Google Scholar

  • [120] Villeneuve L.M., Kato M., Reddy M.A., Wang M., Lanting L., and Natarajan R., Enhanced levels of microrna-125b in vascular smooth muscle cells of diabetic db/db mice lead to increased inflammatory gene expression by targeting the histone methyltransferase suv39h1. Diabetes, 2010. 59(11): p. 2904-15. Google Scholar

  • [121] Li Y., Song Y.H., Li F., Yang T., Lu Y.W., and Geng Y.J., Microrna-221 regulates high glucose-induced endothelial dysfunction. Biochem Biophys Res Commun, 2009. 381(1): p. 81-3.Google Scholar

  • [122] Togliatto G., Trombetta A., Dentelli P., Rosso A., and Brizzi M.F., Mir221/mir222-driven post-transcriptional regulation of p27kip1 and p57kip2 is crucial for high-glucose- and agemediated vascular cell damage. Diabetologia, 2011. 54(7): p. 1930-40.Google Scholar

  • [123] Caporali A., Meloni M., Vollenkle C., Bonci D., Sala- Newby G.B., Addis R., et al., Deregulation of microrna-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation, 2011. 123(3): p. 282-91.CrossrefPubMedGoogle Scholar

  • [124] Bravo-Egana V., Rosero S., Molano R.D., Pileggi A., Ricordi C., Dominguez-Bendala J., et al., Quantitative differential expression analysis reveals mir-7 as major islet microrna. Biochem Biophys Res Commun, 2008. 366(4): p. 922-6.Google Scholar

  • [125] Correa-Medina M., Bravo-Egana V., Rosero S., Ricordi C., Edlund H., Diez J., et al., Microrna mir-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr Patterns, 2009. 9(4): p. 193-9.CrossrefGoogle Scholar

  • [126] Nieto M., Hevia P., Garcia E., Klein D., Alvarez-Cubela S., Bravo-Egana V., et al., Antisense mir-7 impairs insulin expression in developing pancreas and in cultured pancreatic buds. Cell Transplant, 2012. 21(8): p. 1761-74.CrossrefGoogle Scholar

  • [127] Shantikumar S., Caporali A., and Emanueli C., Role of micrornas in diabetes and its cardiovascular complications. Cardiovasc Res, 2012. 93(4): p. 583-93.CrossrefGoogle Scholar

  • [128] Lovis P., Gattesco S., and Regazzi R., Regulation of the expression of components of the exocytotic machinery of insulinsecreting cells by micrornas. Biol Chem, 2008. 389(3): p. 305-12. Google Scholar

About the article

Received: 2013-10-09

Accepted: 2013-11-12

Published Online: 2014-07-26

Published in Print: 2014-07-01

Citation Information: Non-coding RNAs in Endocrinology, Volume 1, Issue 1, ISSN (Online) 2300-4258, DOI: https://doi.org/10.2478/micrnado-2013-0004.

Export Citation

© 2014. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in