Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Non-coding RNAs in Endocrinology

Ed. by Hardikar, Anandwardhan

1 Issue per year

Emerging Science

Open Access
See all formats and pricing
More options …

MicroRNAs in diabetes - are they perpetrators in disguise or just epiphenomena?

Prasanth Puthanveetil
  • Department of Pathology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anu Alice Thomas
  • Department of Pathology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Subrata Chakrabarti
  • Corresponding author
  • Department of Pathology, Western University Rm 4033, Dental Sciences Building London, Ontario, Canada
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-09-19 | DOI: https://doi.org/10.2478/micrnado-2014-0002


MicroRNAs (miRNA) are non-coding RNAs, the majority of which are 22 nucleotide in size. They regulate gene transcription and control more than 50% of the mammalian genome. Although functional significance and targets of several miRNAs are yet to be identified, they may be regarded as controller of cellular physiology and function. Through such regulation they play vital roles in normal and diseased states. In the context of diabetes and chronic diabetic complications, recent research has identified alterations of a significant number of miRNAs. However, in a complex chronic disease like diabetes, multiple transcripts may also change in a temporal fashion depending on the disease progression and activation of counter-regulatory mechanisms. Hence, it is also possible that some miRNA changes may not be causally related to the disease pathogenesis and represent epiphenomena. To date, over 500 studies have addressed the role of miRNAs in the pathogenesis of type 1 and type 2 diabetes and chronic diabetic complications. Majority of the altered miRNAs appear to have pathogenetic roles. In this review, we have tried to identify alterations of specific miRNAs and the pathways they may regulate. We have also tried to identify whether some of these miRNA alterations may form basis of potential treatments

Keywords: miRNA; Hyperglycemia; Diabetes; Complications


  • [1] The ENCODE Project Consortium, An integrated encyclopedia of DNA elements in the human genome. Nature, 2012. 489 p. 57-74.Google Scholar

  • [2] Dinger M.E; Pang K.C; Mercer T.R; Mattick J.S, Differentiating Protein-Coding and Noncoding RNA: Challenges and Ambiguities PloS Comp Bio, 2008. 4: p. 1-5.Google Scholar

  • [3] Sun K; Lai E.C, Adult-specific functions of animal microRNAs. Nat Rev Genet, 2013. 14: p. 535-548.CrossrefGoogle Scholar

  • [4] Huang Y; Zhang J.L; Yu X.L; Xu T.S; Wang Z.B; Cheng X.C, Molecular functions of small regulatory noncoding RNA. Biochemistry (Mosc), 2013. 78: p. 221-230.CrossrefGoogle Scholar

  • [5] Xu L; Yang B.F; Ai J, MicroRNA transport: a new way in cell communication. J Cell Physiol., 2013. 228: p. 1713-1719.CrossrefGoogle Scholar

  • [6] Shivdasani R.A, MicroRNAs: regulators of gene expression and cell differentiation. Blood, 2006. 108: p. 3646-3653.CrossrefGoogle Scholar

  • [7] Chen C.H; Guo M; Hay B.A, Identifying microRNA regulators of cell death in Drosophila. Methods Mol Biol, 2006. 342: p. 229-240.Google Scholar

  • [8] McClelland A.D; Kantharidis P, microRNA in the development of diabetic complications. Clin Sci (Lond), 2014. 126(2): p. 95-110.Google Scholar

  • [9] Rebane A; Akdis C.A, MicroRNAs: Essential players in the regulation of inflammation. J Allergy Clin Immunol., 2013. 132: p. 15-26.CrossrefGoogle Scholar

  • [10] TenOever B.R, RNA viruses and the host microRNA machinery. Nat Rev Microbiol. , 2013. 11: p. 169-180.CrossrefGoogle Scholar

  • [11] Shen J; Stass S.A; Jiang F, MicroRNAs as potential biomarkers in human solid tumors. Cancer Lett., 2013. 329: p. 125-136.Google Scholar

  • [12] Foster P.S; Plank M; Collison A; Tay H.L; Kaiko G.E; Li J; Johnston S.L; et al, The emerging role of microRNAs in regulating immune and inflammatory responses in the lung. Immunol Rev, 2013. 253: p. 198-215.Google Scholar

  • [13] Feng B; Chen S; George B; Feng Q; Chakrabarti S, miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes Metab Res Rev, 2010. 26: p. 40-49.Google Scholar

  • [14] Feng B; Chen S; McArthur K; Wu Y; Sen S; Ding Q; Feldman R.D; Chakrabarti S, miR-146a-Mediated extracellular matrix protein production in chronic diabetes complications. Diabetes, 2011. 60: p. 2975-2984.Google Scholar

  • [15] McArthur K; Feng B; Wu Y;Chen S.C; Chakrabarti S, MicroRNA-200b Regulates Vascular Endothelial Growth Factor-Mediated Alterations in Diabetic Retinopathy. Diabetes 2011. 60: p. 1314-1323Google Scholar

  • [16] Cullen B.R, Derivation and function of small interfering RNAs and microRNAs. Virus Res, 2004. 102: p. 3-9.CrossrefGoogle Scholar

  • [17] Yi R; Qin Y; Macara I.G; Cullen B.R, Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev., 2003. 17: p. 3011-3016.PubMedCrossrefGoogle Scholar

  • [18] Zeng Y; Cullen B.R, Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res. , 2004. 32: p. 4776-4785.CrossrefGoogle Scholar

  • [19] Tijsterman M; Plasterk R.H, Dicers at RISC; the mechanism of RNAi. Cell Death Differ., 2004. 2 p. 1-3.Google Scholar

  • [20] Meister G, Argonaute proteins: functional insights and emerging roles. Nature Reviews Genetics, 2013. 4: p. 447-459.CrossrefGoogle Scholar

  • [21] Poy M.N; Eliasson L; Krutzfeldt J; Kuwajima S; Ma X; Macdonald P.E; Pfeffer S; Tuschl T; Rajewsky N; et al, A pancreatic isletspecific microRNA regulates insulin secretion. Nature, 2004. 432: p. 226-230.Google Scholar

  • [22] Lynn F.C; Skewes-Cox P; Kosaka Y; McManus M.T; Harfe B.D; German M.S, MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 2007. 56: p. 2938-2945.CrossrefGoogle Scholar

  • [23] Melkman-Zehavi T; Oren R; Kredo-Russo S; et al, miRNAs control insulin content in pancreatic β-cells via downregulation of transcriptional repressors. . EMBO J, 2011. 30(5): p. 835-845.CrossrefGoogle Scholar

  • [24] Zhuang G; Meng C; Guo X; Cheruku P.S; Shi L; Xu H; Li H; et al, A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation. Circulation, 2012. 125: p. 2892-2903.Google Scholar

  • [25] Liu W; Bi P; Shan T; Yang X; Yin H; Wang Y; Liu N; Rudnicki M.A; Kuang S, miR-133a Regulates Adipocyte Browning In Vivo. PLoS Genet 2013. 9: p. 1-11.Google Scholar

  • [26] Plaisance V; Abderrahmani A; Perret-Menoud V; Jacquemin P; Lemaigre F; Regazzi R, MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulinproducing cells. J Biol Chem., 2006. 281: p. 26932-26942.CrossrefGoogle Scholar

  • [27] Poy, M.N., et al., miR-375 maintains normal pancreatic alphaand beta-cell mass. Proc Natl Acad Sci U S A, 2009. 106(14): p. 5813-8.Google Scholar

  • [28] Nieto M; Hevia P; Garcia E; Klein D; Alvarez-Cabela S; Bravo-Egana V; Rosero S; Damaris Molano R; et al, Antisense miR-7 Impairs Insulin Expression in Developing Pancreas and in Cultured Pancreatic Buds. Cell Transplantation, 2012. 21: p. 1761-1774.CrossrefGoogle Scholar

  • [29] Kredo-Russo S; Mandelbaum A.D; Ness A; Alon I; Lennox K.A; Behlke M.A; Hornstein E, Pancreas-enriched miRNA refines endocrine cell differentiation. Development, 2012. 139: p. 3021-3031.CrossrefGoogle Scholar

  • [30] Baroukh N; Ravier M.A; Loder M.K; Hill E.V; Bounacer A; Scharfmann R; Rutter G.A; Van Obberghen E, MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines. J Biol Chem., 2007. 282: p. 19575-19588.Google Scholar

  • [31] Sun L.L; Jiang B.G; Li W.T; Zou J.J; Shi Y.Q; Liu Z.M, MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diab Res Clin Pract. , 2011. 91: p. 94-100.CrossrefGoogle Scholar

  • [32] Wijesekara N; Zhang L.H; Kang M.H; Abraham T; Bhattacharjee A; Warnock G.L; Verchere C.B; Hayden M.R, miR-33a modulates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets. Diabetes 2012. 61: p. 658-658.Google Scholar

  • [33] Zhang Z.W; Zhang L.Q; Ding L; Wang F; Sun Y.J; An Y; Zhao Y; Li Y.H; Teng C.B, MicroRNA-19b downregulates insulin 1 through targeting transcription factor NeuroD1. FEBS Lett., 2011. 585: p. 2592-2598.Google Scholar

  • [34] Karolina D.S; Armugam A; Tavintharan S; Wong M.T; Lim S.C; et al, MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One, 2011. 6: p. 1-19.Google Scholar

  • [35] Setyowati Karolina D; Sepramaniam S; Tan H.Z; Armugam A; Jeyaseelan K, miR-25 and miR-92a regulate insulin I biosynthesis in rats. RNA Biol., 2013. 10: p. 1365-1378.CrossrefGoogle Scholar

  • [36] Zhu Y; You W; Wang H; Li Y; Qiao N; Shi Y; Zhang C; Bleich D; Han X, MicroRNA-24/MODY gene regulatory pathway mediates pancreatic β-cell dysfunction. Diabetes, 2013. 62: p. 3194-3206.CrossrefGoogle Scholar

  • [37] Zhao X; Mohan R; Ozcan S;Tang X, MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic β-cells. J Biol Chem. , 2012. 287: p. 31155-31164.CrossrefGoogle Scholar

  • [38] Lee E.L; Lee M.J; Abdelmohsen K; Kim W; Srikantan S; Martindale J.L; Kim H.H; Marasa B.S; Gorospe M; et al, miR-130 Suppresses Adipogenesis by Inhibiting Peroxisome Proliferator-Activated Receptor γ Expression. Mol Cell Biol. , 2011. 31: p. 626-638. Google Scholar

  • [39] Kim C;Lee H; Cho Y.M; Kwon O; Kim W; Lee E.K, TNFα-induced miR-130 resulted in adipocyte dysfunction during obesityrelated inflammation. FEBS Letters, 2013. 587: p. 3853-3858.Google Scholar

  • [40] Ferland-McCollough D; Fernandez-Twinn D.S; Cannell I.G; David H; Warner M; Willis A.E; Ozanne S.E; et al, Programming of adipose tissue miR-483-3p and GDF-3 expression by maternal diet in type 2 diabetes. Cell Death Differ, 2012. 19: p. 1003-1012.Google Scholar

  • [41] Xie H; Lim B; Lodish H.F, MicroRNAs Induced During Adipogenesis that Accelerate Fat Cell Development Are Downregulated in Obesity. Diabetes, 2009. 58: p. 1050-1057CrossrefGoogle Scholar

  • [42] Cypess A.M; Kahn C.R, Brown fat as a therapy for obesity and diabetes. Curr Opin Endocrinol Diabetes Obes, 2010. 17: p. 143-149.CrossrefGoogle Scholar

  • [43] Mori M; Nakagami H; Rodriguez-Araujo G; Nimura K; Kaneda Y, Essential Role for miR-196a in Brown Adipogenesis of White Fat Progenitor Cells. PLoS Bio, 2012. 10(4): p. 1-15.Google Scholar

  • [44] Arner E; Mejhert N; Kulyte A; Balwierz P.J; Pachkov M; Cormont M; Lorente-Cebrian S; Ehrlund A; Laurencikiene J; et al, Adipose tissue microRNAs as regulators of CCL2 production in human obesity. Diabetes, 2012. 61: p. 1986-1993.CrossrefGoogle Scholar

  • [45] Zhang W; Rojas M; Lilly B; Tsai N; Lemtalsi; Liou G.I; Caldwell R.D; Caldwell R.B, NAD(P)H Oxidase-Dependent Regulation of CCL2 Production during Retinal Inflammation. Invest Ophthalmol Vis Sci., 2009. 50: p. 3033-3040.CrossrefGoogle Scholar

  • [46] Chen Y.H; Heneidi S; Lee J.M; Layman L.C; Stepp D.W; Gamboa G.M; Chen B.S; Chazenbalk G; Azziz R, miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes, 2013. 62: p. 2278-2286.CrossrefGoogle Scholar

  • [47] Zhou B; Li C; Qi W; Zhang Y;Zhang F; Wu J.X; Hu Y.N; Wu D.M; et al, Downregulation of miR-181a upregulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivity. Diabetologia, 2012. 55: p. 2032-2043.Google Scholar

  • [48] Chan L; Terashima T; Fujimiya M; Kojima H, Chronic Diabetic Complications: The Body’s Adaptive Response to Hyperglycemia Gone Awry? Trans Am Clin Climatol Assoc., 2006. 117: p. 341-352.Google Scholar

  • [49] Fowler M.J, Microvascular and Macrovascular Complications of Diabetes. Clin. Diab., 2008. 26: p. 77-82.CrossrefGoogle Scholar

  • [50] Brownlee M, Biochemistry and molecular cell biology of diabetic complications. Nature, 2001. 414 p. 813-820.CrossrefGoogle Scholar

  • [51] Khan Z.A; Farhangkhoee H; Chakrabarti S, Towards newer molecular targets for chronic diabetic complications. Curr Vasc Pharmacol, 2006. 4: p. 45-57.CrossrefGoogle Scholar

  • [52] Kato M; Zhang J; Wang M; Lanting L; Yuan H; Rossi J.J; Natarajan R, MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A, 2007. 104: p. 3432-3437.Google Scholar

  • [53] Krupa A; Jenkins R; Luo D.D; Phillips A; Fraser D, Loss of MicroRNA-192 Promotes Fibrogenesis in Diabetic Nephropathy. J Am Soc Nephrol., 2010. 21: p. 438-447.Google Scholar

  • [54] Wang B; Herman-Edelstein M; Koh P; Burns W; Jandeleit- Dahm K; Watson A; et al, E-Cadherin Expression Is Regulated by miR-192/215 by a Mechanism That Is Independent of the Profibrotic Effects of Transforming Growth Factor-β. Diabetes 2010. 59: p. 1794-1802Google Scholar

  • [55] Deshpande S.D; Putta S; Wang M; Lai J.Y; Bitzer M; Nelson R.G; Lanting L.L; Kato M; Natarajan R, Transforming Growth Factor-β induced cross talk between p53 and a microRNA in the pathogenesis of Diabetic Nephropathy. Diabetes, 2013 62: p. 3151-3162.CrossrefGoogle Scholar

  • [56] Wang Q; Wang Y; Minto A.W; Wang J; Shi Q; Li X; Quigg R.J, MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J., 2008. 22: p. 4126-4135.Google Scholar

  • [57] Zhang Z; Peng H; Chen J; Chen X; Han F; Xu X; He X; Yan N, MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice. FEBS Lett. , 2009. 583: p. 2009-2014.CrossrefGoogle Scholar

  • [58] Zhong X; Chung A.C; Chen H.Y; Dong Y; Meng X.M; Li R; Yang W; Hou F.F; Lan H.Y, miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia, 2013. 56: p. 663-674.CrossrefGoogle Scholar

  • [59] Wang B; Komers R; Carew R; Winbanks C.E; Xu B; Herman- Edelstein M; Koh P;Thomas M; et al, Suppression of microRNA-29 Expression by TGF-b1Promotes Collagen Expression and Renal Fibrosis. J Am Soc Nephrol., 2012. 23: p. 252-262.Google Scholar

  • [60] Qin W; Chung A.C; Huang X.R; Meng X; Hui D.S.C; Yu C; Sung J.J.Y; Lan H.Y, TGF-β/Smad3 Signaling Promotes Renal Fibrosis by Inhibiting miR-29. J Am Soc Nephrol. , 2011. 22: p. 1462-1474Google Scholar

  • [61] Long J; Wang Y; Danesh F.R, MicroRNA-29c Is a Signature MicroRNA under High Glucose Conditions That Targets Sprouty Homolog 1, and Its in Vivo Knockdown Prevents Progression of Diabetic Nephropathy. J Biol Chem, 2011. 286: p. 11837-11848.CrossrefGoogle Scholar

  • [62] Kriegel A.J; Liu Y; Fang Y; Ding X; Liang M, The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol Genomics, 2012. 144: p. 237-244.CrossrefGoogle Scholar

  • [63] Wang B; Jha J.C; Hagiwara S; McClelland A.D: Jandeleit-Dahm K; Thomas M.C; Cooper M.E; Kantharidis P, Transforming growth factor-β1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b. Kid Int. , 2014. 85: p. 352-361.CrossrefGoogle Scholar

  • [64] Long J; Wang Y; Wang W; Chang B.H; Danesh F.R, Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions. J Biol Chem. , 2010. 285: p. 23457-23465.Google Scholar

  • [65] Xiong M; Jiang L; Zhou Y; Qiu W; Fang L; Tan R; Wen P; Yang J, The miR-200 family regulates TGF-β1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am J Physiol Renal Physiol., 2012. 302: p. 369-379.Google Scholar

  • [66] Brabletz S; Brabletz T, The ZEB/miR-200 feedback loop-a motor of cellular plasticity in development and cancer? EMBO Rep, 2010. 11: p. 670-700.Google Scholar

  • [67] Oba S; Kumano S; Suzuki E; Nishimatsu H; Takahashi M; Takamori H; Kasuya M; Ogawa Y; et al, miR-200b Precursor Can Ameliorate Renal Tubulointerstitial Fibrosis. PLoS One, 2010. 5: p. 1-6.Google Scholar

  • [68] Wang B; Koh P; Winbanks C; Coughlan M.T; McClelland A; Watson A; Jandeleit-Dahm K; et al, miR-200a Prevents renal fibrogenesis through repression of TGF-β2 expression. Diabetes, 2011. 60: p. 280-287.Google Scholar

  • [69] Park JT; Kato M; Yuan H; Castro N; Lanting L; Wang M; Natarajan R, FOG2 protein down-regulation by transforming growth factor-β1-induced microRNA-200b/c leads to Akt kinase activation and glomerular mesangial hypertrophy related to diabetic nephropathy. J Biol Chem., 2013. 288: p. 22469-22480. Google Scholar

  • [70] Alvarez M.L; Khosroheidari M; Eddy E; Kiefer J, Role of MicroRNA 1207-5P and Its Host Gene, the Long Non-Coding RNA Pvt1, as Mediators of Extracellular Matrix Accumulation in the Kidney: Implications for Diabetic Nephropathy. PLoS One, 2013. 8 p. 1-14.Google Scholar

  • [71] Dey N; Das F; Ghosh-Choudhury N; Mandal C.C; Parekh D.J; Block K; et al, microRNA-21 governs TORC1 activation in renal cancer cell proliferation and invasion. PLoS One., 2012. 7: p. 1-17.Google Scholar

  • [72] Faherty N; Curran S.P; O’Donovan H; Martin F; Godson C; Brazil D.P; Crean J.K, CCN2/CTGF increases expression of miR-302 microRNAs, which target the TGFb type II receptor with implications for nephropathic cell phenotypes. J.Cell Sci., 2012. 125: p. 5621-5629.Google Scholar

  • [73] Wang N; Zhou Y; Jiang L; Li D; Yang J; Zhang C.Y; Zen K, Urinary microRNA-10a and microRNA-30d serve as novel, sensitive and specific biomarkers for kidney injury. PLoS One, 2012. 7: p. 1-8.Google Scholar

  • [74] Sharma V; McNeill J.H, Diabetic cardiomyopathy: Where are we 40 years later? Can J Cardiol., 2006. 22: p. 305-308.CrossrefGoogle Scholar

  • [75] Pappachan J.M; Varughese; Sriraman R; Arunagirinathan G, Diabetic cardiomyopathy: Pathophysiology, diagnostic evaluation and management. World J Diab., 2013. 4: p. 177-189.Google Scholar

  • [76] Chen S; Putheveetil P; Feng B; Matkovich S.J; Dorn G.W; Chakrabarti S, Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes. J. Cell. Mol. Med. , 2014. 18: p. 415-421.Google Scholar

  • [77] Abdellatif M, The Role of MicroRNA-133 in Cardiac Hypertrophy Uncovered. Circ Res., 2010. 106: p. 16-18.Google Scholar

  • [78] Simona Greco S; Fasanaro P; Castelvecchio S; D’Alessandra Y; Arcelli D; Di Donato M; Malavazos A; Capogrossi M.C; Menicanti L; Martelli F, MicroRNA Dysregulation in Diabetic Ischemic Heart Failure Patients. Diabetes, 2012. 61: p. 1633-1641.CrossrefGoogle Scholar

  • [79] Chavali V; Tyagi S.C; Mishra P.K, MicroRNA-133a regulates DNA methylation in diabetic cardiomyocytes. Biochem Biophys Res Commun, 2012. 425: p. 668-672.Google Scholar

  • [80] Kishore R; Verma S.K; Mackie A.R; Vaughan E.E; Abramova T.V; Aiko I; Krishnamurthy P, Bone marrow progenitor cell therapymediated paracrine regulation of cardiac miRNA-155 modulates fibrotic response in diabetic hearts. PLoS One, 2013. 8: p. 1-12.Google Scholar

  • [81] Shen E; Diao X; Wang X; Chen R; Hu B, MicroRNAs involved in the mitogen-activated protein kinase cascades pathway during glucose-induced cardiomyocyte hypertrophy. Am J Pathol., 2011. 179: p. 639-650.CrossrefGoogle Scholar

  • [82] Shan Z.X; Lin Q.X; Deng C.Y; Zhu J.N; Mai L.P; Liu J.L; Fu Y.H; Liu X.Y; et al, miR-1/miR-206 regulate Hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes. FEBS Lett., 2010. 584: p. 3592-3600.Google Scholar

  • [83] Prasanth Puthanveetil P; Wan A; Rodrigues B, FoxO1 is crucial for sustaining cardiomyocyte metabolism and cell survival. Cardiovas Res., 2013. 97: p. 393-403.CrossrefGoogle Scholar

  • [84] Diamant M, Current studies of diabetic cardiomyopathy and the advancement of our knowledge: time to learn from history, guidelines,...and other disciplines? Eur J Heart Fail, 2012. 14: p. 115-117.CrossrefGoogle Scholar

  • [85] Wang X.H; Qian R.Z; Zhang W; Chen S.F; Jin H.M; Hu R.M, MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clin Exp Pharmacol Physiol., 2009. 36: p. 181-188. Google Scholar

  • [86] Feng B;l Chakrabarti S, miR-320 Regulates Glucose-Induced Gene Expression in Diabetes. ISRN Endocrinology, 2012. 2012: p. 1-7.Google Scholar

  • [87] Baseler W.A; Thapa D; Jagannathan R; Dabkowski E.R; Croston T.L; Hollander J.M, miR-141 as a regulator of the mitochondrial phosphate carrier (Slc25a3) in the type 1 diabetic heart. Am J Physiol Cell Physiol, 2012. 303: p. 1244-C1251.Google Scholar

  • [88] Gallego M; Alday A; Urrutia J; Casis O, Transient outward potassium channel regulation in healthy and diabetic hearts. Can J Physiol Pharmacol, 2009. 87: p. 77-83.CrossrefGoogle Scholar

  • [89] Panguluri S.K; Tur J; Chapalamadugu K.C; Katnik C; Cuevas J; Tipparaju S.M, MicroRNA-301a mediated regulation of Kv4.2 in diabetes: identification of key modulators. PLoS One, 2013. 8: p. 1-16.Google Scholar

  • [90] Peter K; Chen Y.C; Bui A.V; Diesch J; Manasseh R; Hausding C; Rivera J; Haviv I; Agrotis A; Htun N.M; et al, A Novel Mouse Model of Atherosclerotic Plaque Instability for Drug Testing and Mechanistic/Therapeutic Discoveries Using Gene and microRNA Expression Profiling. . Circ. Res., 2014. 114: p.:214-226.Google Scholar

  • [91] Li Y; Song Y.H; Li F; Yang T; Lu Y.W; Geng Y.J, MicroRNA-221 regulates high glucose-induced endothelial dysfunction. Biochem Biophys Res Commun., 2009. 381: p. 81-93.Google Scholar

  • [92] Murray A.R; Chen Q; Takahashi Y; Zhou K.K; Park K; Ma J.X, MicroRNA-200b downregulates oxidation resistance 1 (Oxr1) expression in the retina of type 1 diabetes model. Invest Ophthalmol Vis Sci., 2013. 54: p. 1689-1697.Google Scholar

  • [93] Kovacs B; Lumayag S; Cowan C; Xu S, microRNAs in Early Diabetic Retinopathy in Streptozotocin-induced Diabetic Rats Invest Ophthalmol Vis Sci., 2011. 10: p. 1-27.Google Scholar

  • [94] Khan Z.A; Cukiernik M; Gonder J.R; Chakrabarti S, Oncofetal Fibronectin in Diabetic Retinopathy. Invest. Ophthalmol. Vis. Sci. January 2004 vol. 45 no. 1 287-295 2004. 45: p. 287-295.CrossrefGoogle Scholar

  • [95] Silva V.A; Polesskaya A; Sousa T.A; Correa V.M; Andre N.D; Reis R.I; Kettelhut I.C; Harel-Bellan A; De Lucca F.L, Expression and cellular localization of microRNA-29b and RAX, an activator of the RNA-dependent protein kinase (PKR), in the retina of streptozotocin-induced diabetic rats. Mol Vis. , 2011. 17: p. 2228-2240.Google Scholar

  • [96] Wu J.H; Gao Y; Ren A.J; Zhao S.H; Zhong M; Peng Y.J; Shen W; Jing M; Liu L, Altered microRNA expression profiles in retinas with diabetic retinopathy. Ophthalmic Res. , 2012. 47: p. 195-201.CrossrefGoogle Scholar

  • [97] Ling S; Birnbaum Y; Nanhwan M.K; Thomas B; Bajaj ; Ye Y, MicroRNA-dependent cross-talk between VEGF and HIF1α in the diabetic retina. Cell Signal., 2013. 25: p. 2840-2847.CrossrefGoogle Scholar

  • [98] Nakamura A;Terauchi Y, Lessons from Mouse Models of High Fat Diet Induced NAFLD. Int J Mol Sci., 2013. 14: p. 21240-21257.CrossrefGoogle Scholar

  • [99] Trajkovski M; Hausser J; Soutschek J; Bhat B; Akin A; Zavolan M; Heim M.H; Stoffel M, MicroRNAs 103 and 107 regulate insulin sensitivity. Nature, 2011. 474: p. 649-653.CrossrefGoogle Scholar

  • [100] Herrera B.M; Lockstone H.E; Taylor J.M; Ria M; Barrett A; Collins S; Kaisaki P; Argoud K; et al, Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia, 2010. 53: p. 1099-1109.Google Scholar

  • [101] Li S; Chen X; Zhang H: Liang X: Xiang Y; Yu C: Zen K; Li Y; Zhang C, Differential expression of microRNAs in mouse liver under aberrant energy metabolic status J Lipid Res, 2009. 50: p. 1756-1765. CrossrefGoogle Scholar

  • [102] Herrera B.M; Lockstone H.E; Taylor J.N; Wills Q.F; Kaisaki P.J; Barrett A; Camps C; Fernandez C; et al, MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of Type 2 Diabetes. BMC Medical Genomics, 2009. 2: p. 1-11.Google Scholar

  • [103] Miller A.M; Gilchrist D.S; Nijjar J; Araldi E; Ramirez C.M; Lavery C.A; Fernandez-Hernando C; McInnes I.B; Kurowska-Stolarska M, MiR-155 has a protective role in the development of non-alcoholic hepatosteatosis in mice. PLoS One, 2013. 8(8): p. 1-10.Google Scholar

  • [104] Whittaker R; Loy P.A; Sisman E; Suyama E: Aza-Blanc A; Ingermanson R.A; et al, Identification of MicroRNAs That Control Lipid Droplet Formation and Growth in Hepatocytes via High-Content Screening. J Biomol Screen, 2010. 15: p. 798-805.CrossrefGoogle Scholar

  • [105] Jordan S.D; Kruger M; Willmes D.M; Redemann N; Wunderlich F.T; Bronneke H.S; Merkwirth C; et al, Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol, 2011. 13: p. 434-446.Google Scholar

  • [106] Zhao H; Sui Y; Qiao C; Yip K.Y; Leung R.K; et al, Sustained Antidiabetic Effects of a Berberine-Containing Chinese Herbal Medicine Through Regulation of Hepatic Gene Expression. Diabetes, 2012. 61: p. 933-943.CrossrefGoogle Scholar

  • [107] Wang B; Herman-Edelstein M; Koh P; Burns W; Jandeleit-Dahm K; Watson A; Saleem M; et al, Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res., 2010. 107: p. 810-817.Google Scholar

  • [108] Caporali A; Meloni M; Vollenkle C; Bonci D; Sala-Newby G.B; Addis R; Spinetti G; Losa S; Masson R; et al, Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation, 2011. 123: p. 282-291. Google Scholar

  • [109] Mocharla P; Briand S; Giannotti G; Dorries C; Jakob P; Paneni F; Luscher T; Landmesser U, AngiomiR-126 expression and secretion from circulating CD34(+) and CD14(+) PBMCs: role for proangiogenic effects and alterations in type 2 diabetics. Blood, 2013. 121(1): p. 226-236.Google Scholar

  • [110] Karolina D.S; Armugam A; Tavintharan S; Wong M.T; Lim S.C; Sum C.F; Jeyaseelan K, MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One, 2011. 6(8): p. 1-19.Google Scholar

  • [111] Boettger T; Braun T; Rooij E, A New Level of Complexity-The Role of MicroRNAs in Cardiovascular Development. Circulation Research, 2012. 110: p. 1000-1013CrossrefGoogle Scholar

  • [112] Chen X; Ba Y; Ma L; Cai X; Yin Y; Wang K; Guo J; Zhang Y; et al, Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res., 2008. 18: p. 997-1006.CrossrefGoogle Scholar

  • [113] Rooij E.V; Purcell A.L; Levin A.A, Developing MicroRNA Therapeutics. Circ Res., 2012. 110: p. 496-507.CrossrefGoogle Scholar

  • [114] Correa-Medina M; Bravo-Egana V; Rosero S; Ricordi C; Edlund H; Diez J; Pastori R.L, MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr Patterns, 2009. 4: p. 193-199.CrossrefGoogle Scholar

  • [115] Ramachandran D; Roy U; Garg S; Ghosh S; Pathak S; Kolthur- Seetharam U, Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets. FEBS J., 2011. 278: p. 1167-1174.Google Scholar

  • [116] Shen J; Wan R; Hu G; Yang L; Xiong J; Wang F; Shen J; He S; Guo X; Ni J; Guo C; Wang X, miR-15b and miR-16 induce the apoptosis of rat activated pancreatic stellate cells by targeting Bcl-2 in vitro. Pancreatology, 2012. 12: p. 91-99. CrossrefGoogle Scholar

About the article

Received: 2014-01-21

Accepted: 2014-04-29

Published Online: 2014-09-19

Citation Information: Non-coding RNAs in Endocrinology, Volume 1, Issue 1, ISSN (Online) 2300-4258, DOI: https://doi.org/10.2478/micrnado-2014-0002.

Export Citation

© 2014 Prasanth Puthanveetil et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in