Jump to ContentJump to Main Navigation
Show Summary Details
More options …

microRNA Diagnostics and Therapeutics

Ed. by Sempere, Lorenzo

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2084-6843
See all formats and pricing
More options …

Reprogramming immune responses via microRNA modulation

Juan R. Cubillos-Ruiz
  • Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA / The Ragon Institute of MGH, MIT and Harvard. 149 13th Street, Charlestown, MA 02129, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Melanie R Rutkowski
  • Tumor Microenvironment and Metastasis Program, The Wistar Institute, 3601 Spruce St, Philadelphia, PA 19104, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Julia Tchou
  • Division of Endocrine and Oncologic Surgery, Department of Surgery, and the Rena Rowan Breast Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jose R. Conejo-Garcia
  • Corresponding author
  • Tumor Microenvironment and Metastasis Program, The Wistar Institute, 3601 Spruce St, Philadelphia, PA 19104, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-04-26 | DOI: https://doi.org/10.2478/micrnat-2013-0001

Abstract

It is becoming increasingly clear that there are unique sets of miRNAs that have distinct governing roles in several aspects of both innate and adaptive immune responses. In addition, new tools allow selective modulation of the expression of individual miRNAs, both in vitro and in vivo. Here, we summarize recent advances in our understanding of how miRNAs drive the activity of immune cells, and how their modulation in vivo opens new avenues for diagnostic and therapeutic interventions in multiple diseases, from immunodeficiency to cancer. Recent contributions from our laboratory and other groups to novel formulations for miRNA mimetics are further discussed

Keywords: microRNA; Immunotherapy; Tumor immunology; Adaptive immunity

References

  • [1] Kaya E, Doudna JA. Biochemistry. Guided tour to the heart of RISC. Science. 2012;336:985-6.Google Scholar

  • [2] Schirle NT, MacRae IJ. The crystal structure of human Argonaute2. Science. 2012;336:1037-40.Google Scholar

  • [3] Sempere LF, and Conejo-Garcia JR. Modulation of cancer progression by tumor microenvironmental leukocyteexpressed microRNAs. In Tumor Microenvironment and Myelomonocytic Cells. 2012, Subhra K. Biswas, ed. (Rijeka, Croatia: InTech Open Access Publisher): 221-54.Google Scholar

  • [4] Lodish HF, Zhou B, Liu G, Chen CZ. Micromanagement of the immune system by microRNAs. Nat Rev Immunol. 2008;8:120-30.CrossrefGoogle Scholar

  • [5] Li QJ, Chau J, Ebert PJ, et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell. 2007;129:147-61.Google Scholar

  • [6] Rodriguez A, Vigorito E, Clare S, et al. Requirement of bic/microRNA-155 for normal immune function. Science. 2007;316:608-11.Google Scholar

  • [7] Shen N, Liang D, Tang Y, de Vries N, Tak PP. MicroRNAs-novel regulators of systemic lupus erythematosus pathogenesis. Nat Rev Rheumatol. 2012.CrossrefGoogle Scholar

  • [8] Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012;30:531-64.CrossrefGoogle Scholar

  • [9] Contreras J, Rao DS. MicroRNAs in inflammation and immune responses. Leukemia. 2012;26:404-13.CrossrefGoogle Scholar

  • [10] Asirvatham AJ, Gregorie CJ, Hu Z, Magner WJ, Tomasi TB. MicroRNA targets in immune genes and the Dicer/ Argonaute and ARE machinery components. Mol Immunol. 2008;45:1995-2006.CrossrefGoogle Scholar

  • [11] Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303:83-6.Google Scholar

  • [12] Alemdehy MF, van Boxtel NG, de Looper HW, et al. Dicer1 deletion in myeloid-committed progenitors causes neutrophil dysplasia and blocks macrophage/dendritic cell development in mice. Blood. 2012;119:4723-30.Google Scholar

  • [13] Xu S, Guo K, Zeng Q, Huo J, Lam KP. The RNase III enzyme Dicer is essential for germinal center B-cell formation. Blood. 2012;119:767-76.Google Scholar

  • [14] Koralov SB, Muljo SA, Galler GR, et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell. 2008;132:860-74.Google Scholar

  • [15] Cichocki F, Felices M, McCullar V, et al. Cutting edge: microRNA-181 promotes human NK cell development by regulating Notch signaling. J Immunol. 2011;187:6171-5.Google Scholar

  • [16] Spierings DC, McGoldrick D, Hamilton-Easton AM, et al. Ordered progression of stage-specific miRNA profiles in the mouse B2 B-cell lineage. Blood. 2011;117:5340-9.Google Scholar

  • [17] Garzon R, Croce CM. MicroRNAs in normal and malignant hematopoiesis. Curr Opin Hematol. 2008;15:352-8.CrossrefGoogle Scholar

  • [18] Sandhu SK, Volinia S, Costinean S, et al. miR-155 targets histone deacetylase 4 (HDAC4) and impairs transcriptional activity of B-cell lymphoma 6 (BCL6) in the Emu-miR-155 transgenic mouse model. Proc Natl Acad Sci U S A. 2012.Google Scholar

  • [19] Jiang X, Huang H, Li Z, et al. Blockade of miR-150 Maturation by MLL-Fusion/MYC/LIN-28 Is Required for MLL-Associated Leukemia. Cancer Cell. 2012;22:524-35.Google Scholar

  • [20] Schwind S, Maharry K, Radmacher MD, et al. Prognostic significance of expression of a single microRNA, miR-181a, in cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol. 2010;28:5257-64.Google Scholar

  • [21] Wu H, Neilson JR, Kumar P, et al. miRNA profiling of naive, effector and memory CD8 T cells. PLoS ONE. 2007;2:e1020.CrossrefGoogle Scholar

  • [22] Wang XS, Gong JN, Yu J, et al. MicroRNA-29a and microRNA-142-3p are regulators of myeloid differentiation and acute myeloid leukemia. Blood. 2012;119:4992-5004.Google Scholar

  • [23] Lv M, Zhang X, Jia H, et al. An oncogenic role of miR-142-3p in human T-cell acute lymphoblastic leukemia (T-ALL) by targeting glucocorticoid receptor-alpha and cAMP/PKA pathways. Leukemia. 2012;26:769-77.Google Scholar

  • [24] Robbiani DF, Bunting S, Feldhahn N, et al. AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations. Mol Cell. 2009;36:631-41.CrossrefGoogle Scholar

  • [25] Sun Y, Varambally S, Maher CA, et al. Targeting of microRNA-142-3p in dendritic cells regulates endotoxin-induced mortality. Blood. 2011;117:6172-83.Google Scholar

  • [26] Huang B, Zhao J, Lei Z, et al. miR-142-3p restricts cAMP production in CD4+CD25- T cells and CD4+CD25+ TREG cells by targeting AC9 mRNA. EMBO Rep. 2009;10:180-5.Google Scholar

  • [27] Ding S, Liang Y, Zhao M, et al. Decreased microRNA-142-3p/5p expression causes CD4+ T cell activation and B cell hyperstimulation in systemic lupus erythematosus. Arthritis Rheum. 2012;64:2953-63.Google Scholar

  • [28] Anglicheau D, Sharma VK, Ding R, et al. MicroRNA expression profiles predictive of human renal allograft status. Proc Natl Acad Sci U S A. 2009;106:5330-5.CrossrefGoogle Scholar

  • [29] O’Connell RM, Rao DS, Baltimore D. microRNA regulation of inflammatory responses. Annu Rev Immunol. 2012;30:295-312.CrossrefGoogle Scholar

  • [30] Fazi F, Racanicchi S, Zardo G, et al. Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell. 2007;12:457-66.Google Scholar

  • [31] Johnnidis JB, Harris MH, Wheeler RT, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature. 2008;451:1125-9.Google Scholar

  • [32] Fazi F, Rosa A, Fatica A, et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell. 2005;123:819-31.Google Scholar

  • [33] Lindsay MA. microRNAs and the immune response. Trends Immunol. 2008;29:343-51.CrossrefGoogle Scholar

  • [34] Stehling-Sun S, Dade J, Nutt SL, DeKoter RP, Camargo FD. Regulation of lymphoid versus myeloid fate ‘choice’ by the transcription factor Mef2c. Nat Immunol. 2009;10:289-96.CrossrefGoogle Scholar

  • [35] Xu Y, Sengupta T, Kukreja L, Minella AC. MicroRNA-223 regulates cyclin E activity by modulating expression of F-box and WD-40 domain protein 7. J Biol Chem. 2010;285:34439-46.Google Scholar

  • [36] Fehniger TA, Wylie T, Germino E, et al. Next-generation sequencing identifies the natural killer cell microRNA transcriptome. Genome Res. 2010;20:1590-604.CrossrefGoogle Scholar

  • [37] Allantaz F, Cheng DT, Bergauer T, et al. Expression profiling of human immune cell subsets identifies miRNA-mRNA regulatory relationships correlated with cell type specific expression. PLoS ONE. 2012;7:e29979.CrossrefGoogle Scholar

  • [38] Tili E, Michaille JJ, Cimino A, et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol. 2007;179:5082-9.Google Scholar

  • [39] Cubillos-Ruiz JR, Baird JR, Tesone AJ, et al. Reprogramming tumor-associated dendritic cells in vivo using microRNA mimetics triggers protective immunity against ovarian cancer. Cancer Res. 2012;72:1683-93.CrossrefGoogle Scholar

  • [40] Scarlett UK, Cubillos-Ruiz JR, Nesbeth YC, et al. In situ stimulation of CD40 and Toll-like receptor 3 transforms ovarian cancer-infiltrating dendritic cells from immunosuppressive to immunostimulatory cells. Cancer Res. 2009;69:7329-37.CrossrefGoogle Scholar

  • [41] O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A. 2007;104:1604-9.Google Scholar

  • [42] Thai TH, Calado DP, Casola S, et al. Regulation of the germinal center response by microRNA-155. Science. 2007;316:604-8.Google Scholar

  • [43] Vigorito E, Perks KL, Abreu-Goodger C, et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity. 2007;27:847-59.Google Scholar

  • [44] Androulidaki A, Iliopoulos D, Arranz A, et al. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity. 2009;31:220-31.Google Scholar

  • [45] Marigo I, Bosio E, Solito S, et al. Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity. 2010;32:790-802.CrossrefGoogle Scholar

  • [46] Rai D, Kim SW, McKeller MR, Dahia PL, Aguiar RC. Targeting of SMAD5 links microRNA-155 to the TGF-beta pathway and lymphomagenesis. Proc Natl Acad Sci U S A. 2010;107:3111-6.Google Scholar

  • [47] Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10:942-9.CrossrefGoogle Scholar

  • [48] Unlu S, Tang S, Wang E, et al. Damage associated molecular pattern molecule-induced microRNAs (DAMPmiRs) in human peripheral blood mononuclear cells. PLoS ONE. 2012;7:e38899.CrossrefGoogle Scholar

  • [49] Sonkoly E, Stahle M, Pivarcsi A. MicroRNAs and immunity: Novel players in the regulation of normal immune function and inflammation. Semin Cancer Biol. 2008. CrossrefGoogle Scholar

  • [50] Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaBdependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006;103:12481-6.Google Scholar

  • [51] Tang Y, Luo X, Cui H, et al. MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum. 2009;60:1065-75.Google Scholar

  • [52] Boldin MP, Taganov KD, Rao DS, et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med. 2011;208:1189-201.Google Scholar

  • [53] Li G, Yu M, Lee WW, et al. Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity. Nat Med. 2012;18:1518-24.Google Scholar

  • [54] Ebert PJ, Jiang S, Xie J, Li QJ, Davis MM. An endogenous positively selecting peptide enhances mature T cell responses and becomes an autoantigen in the absence of microRNA miR-181a. Nat Immunol. 2009;10:1162-9.Google Scholar

  • [55] Zhang N, Bevan MJ. Dicer controls CD8+ T-cell activation, migration, and survival. Proc Natl Acad Sci U S A. 2010;107:21629-34.CrossrefGoogle Scholar

  • [56] Lu TX, Hartner J, Lim EJ, et al. MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/ IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J Immunol. 2011;187:3362-73.Google Scholar

  • [57] Ma F, Xu S, Liu X, et al. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-gamma. Nat Immunol. 2011;12:861-9.CrossrefGoogle Scholar

  • [58] Steiner DF, Thomas MF, Hu JK, et al. MicroRNA-29 regulates T-box transcription factors and interferon-gamma production in helper T cells. Immunity. 2011;35:169-81.CrossrefGoogle Scholar

  • [59] Oertli M, Engler DB, Kohler E, Koch M, Meyer TF, Muller A. MicroRNA-155 is essential for the T cell-mediated control of Helicobacter pylori infection and for the induction of chronic Gastritis and Colitis. J Immunol. 2011;187:3578-86.Google Scholar

  • [60] Yao R, Ma YL, Liang W, et al. MicroRNA-155 Modulates Treg and Th17 Cells Differentiation and Th17 Cell Function by Targeting SOCS1. PLoS ONE. 2012;7:e46082.Google Scholar

  • [61] O’Connell RM, Kahn D, Gibson WS, et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity. 2010;33:607-19.Google Scholar

  • [62] Murugaiyan G, Beynon V, Mittal A, Joller N, Weiner HL. Silencing microRNA-155 ameliorates experimental autoimmune encephalomyelitis. J Immunol. 2011;187:2213-21.Google Scholar

  • [63] Alencar AJ, Malumbres R, Kozloski GA, et al. MicroRNAs are independent predictors of outcome in diffuse large B-cell lymphoma patients treated with R-CHOP. Clin Cancer Res. 2011;17:4125-35.CrossrefGoogle Scholar

  • [64] Ventura A, Young AG, Winslow MM, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell. 2008;132:875-86. Google Scholar

  • [65] Xiao C, Srinivasan L, Calado DP, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol. 2008;9:405-14.CrossrefGoogle Scholar

  • [66] Santanam U, Zanesi N, Efanov A, et al. Chronic lymphocytic leukemia modeled in mouse by targeted miR-29 expression. Proc Natl Acad Sci U S A. 2010;107:12210-5.CrossrefGoogle Scholar

  • [67] Yoshimoto M, Sakamoto G, Ohashi Y. Time dependency of the influence of prognostic factors on relapse in breast cancer. Cancer. 1993;72:2993-3001.CrossrefGoogle Scholar

  • [68] Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960-4.Google Scholar

  • [69] Clemente CG, Mihm MC, Jr., Bufalino R, Zurrida S, Collini P, Cascinelli N. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer. 1996;77:1303-10.CrossrefGoogle Scholar

  • [70] Zhang L, Conejo-Garcia JR, Katsaros D, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348:203-13.Google Scholar

  • [71] Kalos M, Levine BL, Porter DL, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3:95ra73.CrossrefGoogle Scholar

  • [72] Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365:725-33.Google Scholar

  • [73] Dudley ME, Wunderlich JR, Robbins PF, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298:850-4.Google Scholar

  • [74] Pardoll D, Drake C. Immunotherapy earns its spot in the ranks of cancer therapy. J Exp Med. 2012;209:201-9.CrossrefGoogle Scholar

  • [75] Topalian SL, Hodi FS, Brahmer JR, et al. Safety, Activity, and Immune Correlates of Anti-PD-1 Antibody in Cancer. N Engl J Med. 2012.Google Scholar

  • [76] Cubillos-Ruiz JR, Engle X, Scarlett UK, et al. Polyethyleniminebased siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity. J Clin Invest. 2009;119:2231-44.Google Scholar

  • [77] Cubillos-Ruiz JR, Martinez D, Scarlett UK, et al. CD277 is a Negative Co-stimulatory Molecule Universally Expressed by Ovarian Cancer Microenvironmental Cells. Oncotarget. 2010;1:329-8.Google Scholar

  • [78] Huarte E, Cubillos-Ruiz JR, Nesbeth YC, et al. Depletion of dendritic cells delays ovarian cancer progression by boosting antitumor immunity. Cancer Res. 2008;68:7684-91.CrossrefGoogle Scholar

  • [79] Nesbeth Y, Scarlett U, Cubillos-Ruiz J, et al. CCL5-mediated endogenous antitumor immunity elicited by adoptively transferred lymphocytes and dendritic cell depletion. Cancer Res. 2009;69:6331-8.Google Scholar

  • [80] Nesbeth YC, Martinez DG, Toraya S, et al. CD4+ T cells elicit host immune responses to MHC class II- ovarian cancer through CCL5 secretion and CD40-mediated licensing of dendritic cells. J Immunol. 2010;184:5654-62. Google Scholar

  • [81] Scarlett UK, Rutkowski MR, Rauwerdink AM, et al. Ovarian cancer progression is controlled by phenotypic changes in dendritic cells. J Exp Med. 2012;209:495-506.Google Scholar

  • [82] Xiao C, Rajewsky K. MicroRNA control in the immune system: basic principles. Cell. 2009;136:26-36.Google Scholar

  • [83] O’Connell RM, Rao DS, Chaudhuri AA, et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med. 2008;205:585-94.Google Scholar

  • [84] Costinean S, Zanesi N, Pekarsky Y, et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci U S A. 2006;103:7024-9.Google Scholar

  • [85] Sempere LF, Preis M, Yezefski T, et al. Fluorescence-based codetection with protein markers reveals distinct cellular compartments for altered MicroRNA expression in solid tumors. Clin Cancer Res. 2010;16:4246-55.CrossrefGoogle Scholar

  • [86] Ranganathan P, Heaphy CE, Costinean S, et al. Regulation of acute graft-versus-host disease by microRNA-155. Blood. 2012;119:4786-97.Google Scholar

  • [87] Sui W, Dai Y, Huang Y, Lan H, Yan Q, Huang H. Microarray analysis of MicroRNA expression in acute rejection after renal transplantation. Transpl Immunol. 2008;19:81-5.CrossrefGoogle Scholar

  • [88] Hariharan M, Scaria V, Pillai B, Brahmachari SK. Targets for human encoded microRNAs in HIV genes. Biochem Biophys Res Commun. 2005;337:1214-8.Google Scholar

  • [89] Nathans R, Chu CY, Serquina AK, Lu CC, Cao H, Rana TM. Cellular microRNA and P bodies modulate host-HIV-1 interactions. Mol Cell. 2009;34:696-709.Google Scholar

  • [90] Ahluwalia JK, Khan SZ, Soni K, et al. Human cellular microRNA hsa-miR-29a interferes with viral nef protein expression and HIV-1 replication. Retrovirology. 2008;5:117.Google Scholar

  • [91] Ancuta P, Monteiro P, Sekaly RP. Th17 lineage commitment and HIV-1 pathogenesis. Curr Opin HIV AIDS. 2010;5:158-65.Google Scholar

  • [92] Huang J, Wang F, Argyris E, et al. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med. 2007;13:1241-7.Google Scholar

  • [93] Triboulet R, Mari B, Lin YL, et al. Suppression of microRNAsilencing pathway by HIV-1 during virus replication. Science. 2007;315:1579-82.Google Scholar

  • [94] Swaminathan S, Suzuki K, Seddiki N, et al. Differential regulation of the Let-7 family of microRNAs in CD4+ T cells alters IL-10 expression. J Immunol. 2012;188:6238-46.Google Scholar

  • [95] Kulkarni S, Savan R, Qi Y, et al. Differential microRNA regulation of HLA-C expression and its association with HIV control. Nature. 2011;472:495-8.Google Scholar

  • [96] Cubillos-Ruiz JR, Fiering S, Conejo-Garcia JR. Nanomolecular targeting of dendritic cells for ovarian cancer therapy. Future Oncol. 2009;5:1189-92.CrossrefGoogle Scholar

  • [97] Cubillos-Ruiz JR, Rutkowski M, Conejo-Garcia JR.Blocking ovarian cancer progression by targeting tumor microenvironmental leukocytes. Cell Cycle. 2010;9:260-8.CrossrefGoogle Scholar

  • [98] Huang L, Lemos HP, Li L, et al. Engineering DNA nanoparticles as immunomodulatory reagents that activate regulatory T cells. J Immunol. 2012;188:4913-20. Google Scholar

  • [99] Kim SS, Peer D, Kumar P, et al. RNAi-mediated CCR5 silencing by LFA-1-targeted nanoparticles prevents HIV infection in BLT mice. Mol Ther. 2010;18:370-6.Google Scholar

  • [100] Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, Rossi JJ. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol. 2005;23:222-6.CrossrefGoogle Scholar

  • [101] Gu S, Jin L, Zhang Y, et al. The Loop Position of shRNAs and Pre-miRNAs Is Critical for the Accuracy of Dicer Processing In Vivo. Cell. 2012;151:900-11.Google Scholar

  • [102] Park JE, Heo I, Tian Y, et al. Dicer recognizes the 5’ end of RNA for efficient and accurate processing. Nature. 2011;475:201-5.Google Scholar

  • [103] Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438:685-9.Google Scholar

  • [104] Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4:721-6. CrossrefGoogle Scholar

About the article

Received: 2013-01-15

Accepted: 2013-03-15

Published Online: 2013-04-26

Published in Print: 2014-01-01


Citation Information: microRNA Diagnostics and Therapeutics, ISSN (Online) 2084-6843, DOI: https://doi.org/10.2478/micrnat-2013-0001.

Export Citation

© 2013 Juan R. Cubillos-Ruiz et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in