Jump to ContentJump to Main Navigation
Show Summary Details
More options …

microRNA Diagnostics and Therapeutics

Ed. by Sempere, Lorenzo

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2084-6843
See all formats and pricing
More options …

miR-29a and miR-30c negatively regulate DNMT 3a in cardiac ischemic tissues: implications for cardiac remodelling

Carolina Gambacciani / Claudia Kusmic / Elena Chiavacci / Francesco Meghini / Milena Rizzo / Laura Mariani / Letizia Pitto
Published Online: 2013-10-25 | DOI: https://doi.org/10.2478/micrnat-2013-0004

Abstract

Recent evidences indicate that epigenetic changes play an important role in the transcriptional reprogramming of gene expression that characterizes cardiac hypertrophy and failure and may dictate response to therapy. Several data demonstrate that microRNAs (miRNAs) play critical roles both in normal cardiac function and under pathological conditions. Here we assessed, in in vivo rat models of myocardial infarction (MI) and ischemia-reperfusion (IR), the relationship between two miRNAs (miR-29a and miR-30c) and de novo methyltransferase (DNMT3a) which, altering the chromatin accessibility for transcription factors, deeply impacts gene expression. We showed that the levels of members of miR-29 and miR- 30 families were down regulated in ischemic tissues whilst the protein levels of DNMT3a were increased, such a relation was not present in healthy tissues. Furthermore, by an in vitro assay, we demonstrated that both miRNAs are able to down regulate DNMT3a by directly interacting with DNMT3a 3’UTR and that miR-29a or miR-30c overexpression in the cardiac HL1 cell line causes decrease of DNMT3a enzyme both at the mRNA and protein levels. Our data, besides confirming the down regulation of the miR-29a and miR-30c in infarcted tissues, envisage a cross-talk between microRNAs and chromatin modifying enzymes suggesting a new mechanism that might generate the alterations of DNA methylation often observed in myocardial pathophysiology.

Keywords: microRNAs; DNMT3a; DNA methylation; myocardial infarction

References

  • [1] Olson E.N., Schneider M.D., Sizing up the heart: development redux in disease, Genes Dev, 2003, 17, 1937-1956.CrossrefGoogle Scholar

  • [2] Chien K.R., Stress pathways and heart failure, Cell, 1999, 98, 555-558.Google Scholar

  • [3] Marks A.R., A guide for the perplexed: towards an understanding of the molecular basis of heart failure, Circulation, 2003, 107, 1456-1459.Google Scholar

  • [4] Molkentin J.D., Dorn G.W., 2nd, Cytoplasmic signaling pathways that regulate cardiac hypertrophy, Annu Rev Physiol, 2001, 63, 391-426.Google Scholar

  • [5] Ehrlich M., Gama-Sosa M.A., Huang L.H., Midgett R.M., Kuo K.C., McCune R.A., Gehrke C., Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells, Nucleic Acids Res, 1982, 10, 2709-2721.Google Scholar

  • [6] Bird A., The essentials of DNA methylation, Cell, 1992, 70, 5-8.CrossrefGoogle Scholar

  • [7] Jurkowska R.Z., Jurkowski T.P., Jeltsch A., Structure and function of mammalian DNA methyltransferases, Chembiochem : a European journal of chemical biology, 2011, 12, 206-222.Google Scholar

  • [8] Chen C.C., Wang K.Y., Shen C.K., DNA 5-Methylcytosine Demethylation Activities of the Mammalian DNA Methyltransferases, J Biol Chem, 2013, Web of ScienceGoogle Scholar

  • [9] Rai K., Huggins I.J., James S.R., Karpf A.R., Jones D.A., Cairns B.R., DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45, Cell, 2008, 135, 1201-1212.Web of ScienceGoogle Scholar

  • [10] Waterland R.A., Jirtle R.L., Transposable elements: targets for early nutritional effects on epigenetic gene regulation, Molecular and cellular biology, 2003, 23, 5293-5300.Google Scholar

  • [11] Ingrosso D., Cimmino A., Perna A.F., Masella L., De Santo N.G., De Bonis M.L., Vacca M., D’Esposito M., D’Urso M., Galletti P., et al., Folate treatment and unbalanced methylation and changes of allelic expression induced by hyperhomocysteinaemia in patients with uraemia, Lancet, 2003, 361, 1693-1699.Google Scholar

  • [12] Breton C.V., Byun H.M., Wenten M., Pan F., Yang A., Gilliland F.D., Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation, American journal of respiratory and critical care medicine, 2009, 180, 462-467.Google Scholar

  • [13] Zhang H., Darwanto A., Linkhart T.A., Sowers L.C., Zhang L., Maternal cocaine administration causes an epigenetic modification of protein kinase Cepsilon gene expression in fetal rat heart, Mol Pharmacol, 2007, 71, 1319-1328.Google Scholar

  • [14] van Rooij E., Sutherland L.B., Liu N., Williams A.H., McAnally J., Gerard R.D., Richardson J.A., Olson E.N., A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure, Proc Natl Acad Sci U S A, 2006, 103, 18255-18260.Google Scholar

  • [15] Thum T., Galuppo P., Wolf C., Fiedler J., Kneitz S., van Laake L.W., Doevendans P.A., Mummery C.L., Borlak J., Haverich A., et al., MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure, Circulation, 2007, 116, 258-267.Google Scholar

  • [16] Cheng Y., Ji R., Yue J., Yang J., Liu X., Chen H., Dean D.B., Zhang C., MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy?, The American journal of pathology, 2007, 170, 1831-1840.Web of ScienceGoogle Scholar

  • [17] Divakaran V.G., Gao F., Sivasubramanian N., Mann D.L., MicroRNA 25 and 29a are Differentially Regulated in SMAD-3 Deficient Mice in Pressure Overload Cardiac Hypertrophy and Decrease Collagen Synthesis in Isolated Cardiac Fibroblasts, Circulation, 2008, 118, S534-S534.Google Scholar

  • [18] Garzon R., Liu S., Fabbri M., Liu Z., Heaphy C.E., Callegari E., Schwind S., Pang J., Yu J., Muthusamy N., et al., MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1, Blood, 2009, 113, 6411-6418.Web of ScienceGoogle Scholar

  • [19] Nguyen T., Kuo C., Nicholl M.B., Sim M.S., Turner R.R., Morton D.L., Hoon D.S., Downregulation of microRNA-29c is associated with hypermethylation of tumor-related genes and disease outcome in cutaneous melanoma, Epigenetics : official journal of the DNA Methylation Society, 2011, 6, 388-394.Google Scholar

  • [20] Fabbri M., Garzon R., Cimmino A., Liu Z., Zanesi N., Callegari E., Liu S., Alder H., Costinean S., Fernandez-Cymering C., et al., MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B, Proc Natl Acad Sci U S A, 2007, 104, 15805-15810.CrossrefGoogle Scholar

  • [21] Poliseno L., Salmena L., Riccardi L., Fornari A., Song M.S., Hobbs R.M., Sportoletti P., Varmeh S., Egia A., Fedele G., et al., Identification of the miR-106b~25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation, Sci Signal, 2010, 3, ra29.Web of ScienceGoogle Scholar

  • [22] Claycomb W.C., Lanson N.A., Jr., Stallworth B.S., Egeland D.B., Delcarpio J.B., Bahinski A., Izzo N.J., Jr., HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte, Proc Natl Acad Sci U S A, 1998, 95, 2979-2984.Google Scholar

  • [23] Huang L.E., Bunn H.F., Hypoxia-inducible factor and its biomedical relevance, J Biol Chem, 2003, 278, 19575-19578.Google Scholar

  • [24] Ronkainen V.P., Ronkainen J.J., Hanninen S.L., Leskinen H., Ruas J.L., Pereira T., Poellinger L., Vuolteenaho O., Tavi P., Hypoxia inducible factor regulates the cardiac expression and secretion of apelin, The FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2007, 21, 1821-1830.CrossrefGoogle Scholar

  • [25] Ho L., Miller E.L., Ronan J.L., Ho W.Q., Jothi R., Crabtree G.R., esBAF facilitates pluripotency by conditioning the genome for LIF/STAT3 signalling and by regulating polycomb function, Nature cell biology, 2011, 13, 903-913.CrossrefWeb of ScienceGoogle Scholar

  • [26] Montgomery R.L., Davis C.A., Potthoff M.J., Haberland M., Fielitz J., Qi X., Hill J.A., Richardson J.A., Olson E.N., Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility, Genes Dev, 2007, 21, 1790-1802.CrossrefWeb of ScienceGoogle Scholar

  • [27] Montgomery R.L., Potthoff M.J., Haberland M., Qi X., Matsuzaki S., Humphries K.M., Richardson J.A., Bassel- Duby R., Olson E.N., Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice, J Clin Invest, 2008, 118, 3588-3597.Web of ScienceGoogle Scholar

  • [28] Haas J., Frese K.S., Park Y.J., Keller A., Vogel B., Lindroth A.M., Weichenhan D., Franke J., Fischer S., Bauer A., et al., Alterations in cardiac DNA methylation in human dilated cardiomyopathy, EMBO molecular medicine, 2013, Google Scholar

  • [29] Hiltunen M.O., Yla-Herttuala S., DNA methylation, smooth muscle cells, and atherogenesis, Arteriosclerosis, thrombosis, and vascular biology, 2003, 23, 1750-1753.CrossrefGoogle Scholar

  • [30] Wang R., Li N., Zhang Y., Ran Y., Pu J., Circulating microRNAs are promising novel biomarkers of acute myocardial infarction, Intern Med, 2011, 50, 1789-1795.Google Scholar

  • [31] Braconi C., Kogure T., Valeri N., Huang N., Nuovo G., Costinean S., Negrini M., Miotto E., Croce C.M., Patel T., microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer, Oncogene, 2011, 30, 4750-4756.Web of ScienceGoogle Scholar

  • [32] Pullen T.J., da Silva Xavier G., Kelsey G., Rutter G.A., miR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1), Molecular and cellular biology, 2011, 31, 3182-3194. Google Scholar

  • [33] Fang Y., Yu X., Liu Y., Kriegel A.J., Heng Y., Xu X., Liang M., Ding X., MiR-29c is down-regulated in renal interstitial fibrosis in humans and rats and restored by HIF-alpha activation, American journal of physiology. Renal physiology, 2013, Web of ScienceGoogle Scholar

  • [34] Yang T., Liang Y., Lin Q., Liu J., Luo F., Li X., Zhou H., Zhuang S., Zhang H., MiR-29 mediates TGFbeta1-induced extracellular matrix synthesis through activation of PI3K-AKT pathway in human lung fibroblasts, Journal of cellular biochemistry, 2012, Google Scholar

  • [35] van Rooij E., Sutherland L.B., Thatcher J.E., DiMaio J.M., Naseem R.H., Marshall W.S., Hill J.A., Olson E.N., Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis, Proc Natl Acad Sci U S A, 2008, 105, 13027-13032.Google Scholar

  • [36] Duisters R.F., Tijsen A.J., Schroen B., Leenders J.J., Lentink V., van der Made I., Herias V., van Leeuwen R.E., Schellings M.W., Barenbrug P., et al., miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling, Circ Res, 2009, 104, 170-178, 176p following 178.Google Scholar

  • [37] Jones P.A., Baylin S.B., The epigenomics of cancer, Cell, 2007, 128, 683-692. Google Scholar

  • [38] Baccarelli A., Wright R., Bollati V., Litonjua A., Zanobetti A., Tarantini L., Sparrow D., Vokonas P., Schwartz J., Ischemic heart disease and stroke in relation to blood DNA methylation, Epidemiology, 2010, 21, 819-828.CrossrefGoogle Scholar

  • [39] Kim M., Long T.I., Arakawa K., Wang R., Yu M.C., Laird P.W., DNA methylation as a biomarker for cardiovascular disease risk, PLoS One, 2010, 5, e9692.Google Scholar

  • [40] Movassagh M., Choy M.K., Knowles D.A., Cordeddu L., Haider S., Down T., Siggens L., Vujic A., Simeoni I., Penkett C., et al., Distinct epigenomic features in end-stage failing human hearts, Circulation, 2011, 124, 2411-2422.Web of ScienceGoogle Scholar

  • [41] Dorn G.W., 2nd, Liggett S.B., Mechanisms of pharmacogenomic effects of genetic variation within the cardiac adrenergic network in heart failure, Mol Pharmacol, 2009, 76, 466-480.Web of ScienceGoogle Scholar

  • [42] Murphy E., Steenbergen C., Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury, Physiological reviews, 2008, 88, 581-609.Web of ScienceGoogle Scholar

  • [43] Afanas’ev I., ROS and RNS signaling in heart disorders: could antioxidant treatment be successful?, Oxidative medicine and cellular longevity, 2011, 2011, 293769. Google Scholar

About the article

Received: 2013-05-19

Accepted: 2013-10-03

Published Online: 2013-10-25

Published in Print: 2014-01-01


Citation Information: microRNA Diagnostics and Therapeutics, ISSN (Online) 2084-6843, DOI: https://doi.org/10.2478/micrnat-2013-0004.

Export Citation

© 2013 Carolina Gambacciani et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in