Jump to ContentJump to Main Navigation
Show Summary Details
More options …

microRNA Diagnostics and Therapeutics

Ed. by Sempere, Lorenzo

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2084-6843
See all formats and pricing
More options …

Circulating MicroRNAs as Biomarkers in Coronary Heart Disease and Heart Failure

Vicky A Cameron
  • Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch 8140, New Zealand
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna P Pilbrow
  • Corresponding author
  • Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch 8140, New Zealand
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-09-12 | DOI: https://doi.org/10.2478/micrnat-2014-0002

Abstract

MicroRNAs (miRNAs) are small non-coding, single-stranded RNAs (19–25 nucleotides long) that regulate expression of multiple target genes, predominantly by binding to the 3′ untranslated region of messenger RNA (mRNA) transcripts, resulting either in translational inhibition or mRNA degradation. miRNAs are found in many bodily fluids, including plasma and serum, and are protected from degradation in the circulation through association with lipids, proteins, or microparticles, making them attractive disease biomarker candidates. Circulating levels of cardiac miRNAs (including miR-1, miR-133a, miR-208a, miR-208b, and miR-499) have been frequently reported as elevated in both coronary heart disease (CHD) and heart failure (HF) and have been proposed as candidate biomarkers that reflect the severity of myocardial injury. Subsequent large, array-based screening studies comparing patients and controls have identified altered expression of additional miRNAs, not just those of cardiac origin. However, among these studies there has been little consensus as to which miRNAs are top candidates for diagnosis or prognosis in either CHD or HF. The measurement of circulating miRNAs is further complicated by the timing of collection, especially after acute cardiac events while miRNA levels in blood may be rapidly changing; confounding influences from medications or contaminating blood cells at the time of sampling; and the need for standardization of normalization strategies. This review evaluates recent developments in the identification of circulating miRNAs as markers for diagnosis and prognosis in CHD and HF, and the methodological issues in measurement of circulating miRNAs.

Keywords : Circulating microRNAs; biomarkers; plasma; coronary heart disease; heart failure; normalization; review

References

  • [1] Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350-5. Google Scholar

  • [2] Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: Novel Biomarkers and Extracellular Communicators in Cardiovascular Disease? Circ Res. 2012;110(3):483-95. CrossrefGoogle Scholar

  • [3] Xu J, Zhao J, Evan G, Xiao C, Cheng Y, Xiao J. Circulating microRNAs: Novel biomarkers for cardiovascular diseases. J Mol Med (Berl). 2011. Google Scholar

  • [4] Karunakaran D, Rayner K. MicroRNAs in cardiovascular health: From order to disorder. Endocrinology. 2013;154(1):4000-9. CrossrefGoogle Scholar

  • [5] Abdellatif M. Differential Expression of microRNAs in different disease states. Circ Res. 2012;110:638-50. CrossrefGoogle Scholar

  • [6] Divakaran V, Mann D. The emerging role of microRNAs in cardiac remodeling and heart failure. Circ Res. 2008;103:1072-83. CrossrefGoogle Scholar

  • [7] Kumarswamy R, Thum T. Non-coding RNAs in cardiac remodeling and heart failure. Circ Res. 2013;113:676-89. CrossrefGoogle Scholar

  • [8] Cortez M, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood A, Calin G. MicroRNAs in body fluids - the mix of hormones and biomarkers. Nat Rev Clin Oncol. 2011;8:467-77. CrossrefPubMedGoogle Scholar

  • [9] Boon RA, Vickers KC. Intercellular transport of microRNAs. Arterioscler Thromb Vasc Biol. 2013;33(2):186-92. CrossrefGoogle Scholar

  • [10] Rayner KJ, Hennessy EJ. Extracellular communication via microRNA: Lipid particles have a new message. Journal of Lipid Research. 2013;54(5):1174-81. CrossrefGoogle Scholar

  • [11] Turchinovich A, Weiz L, Burwinkel B. Extracellular MiRNAs: The mystery of their origin and function. Trends Biochem Sci. 2012;37(11):460-5. CrossrefGoogle Scholar

  • [12] Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654-9. CrossrefGoogle Scholar

  • [13] Zernecke A, Bidzhekov K, Noels H, et al. Delivery of microRNA-126 by apoptotic bodies induces Cxcl12-dependent vascular protection. Science Signaling. 2009;2(100):ra81. Google Scholar

  • [14] Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13(4):423-33. CrossrefGoogle Scholar

  • [15] Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Nat Acad Sci USA. 2011;108(12):5003-8. CrossrefGoogle Scholar

  • [16] Simpson RJ, Jensen SS, Lim JW. Proteomic Profiling of exosomes: Current perspectives. Proteomics. 2008;8(19):4083-99. CrossrefGoogle Scholar

  • [17] Thery C, Boussac M, Veron P, et al. Proteomic analysis of dendritic cell-derived exosomes: A secreted subcellular compartment distinct from apoptotic vesicles. J Immunol. 2001;166(12):7309-18. CrossrefGoogle Scholar

  • [18] Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: Artefacts no more. Trends Cell Biol. 2009;19(2):43-51. CrossrefGoogle Scholar

  • [19] Huber J, Vales A, Mitulovic G, et al. Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions. Arterioscler Thromb Vasc Biol. 2002;22(1):101-7. CrossrefGoogle Scholar

  • [20] Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39(16):7223-33. CrossrefGoogle Scholar

  • [21] Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 2010;38(20):7248-59. CrossrefGoogle Scholar

  • [22] Diehl P, Fricke A, Sander L, et al. Microparticles: Major transport vehicles for distinct microRNAs in circulation. Cardiovasc Res. 2012;93(4):633-44. CrossrefGoogle Scholar

  • [23] Finn NA, Searles CD. Using information theory to assess the communicative capacity of circulating microRNA. Biochem Biophys Res Commun. 2013;440(1):1-7. CrossrefGoogle Scholar

  • [24] De Rosa S, Fichtlscherer S, Lehmann R, Assmus B, Dimmeler S, Zeiher AM. Transcoronary concentration gradients of circulating microRNAs. Circulation. 2011;124(18):1936-44. CrossrefGoogle Scholar

  • [25] Jansen F, Yang X, Hoelscher M, et al. Endothelial microparticle-mediated transfer of microRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation. 2013;128(18):2026-38. Google Scholar

  • [26] Hergenreider E, Heydt S, Tréguer K, et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol. 2012;14(3):249-56. CrossrefGoogle Scholar

  • [27] Zhang Y, Liu D, Chen X, et al. Secreted monocytic mir-150 enhances targeted endothelial cell migration. Molecular Cell. 2010;39(1):133-44. Google Scholar

  • [28] Dangwal S, Thum T. MicroRNA therapeutics in cardiovascular disease models. Ann Rev Pharmocol Toxicol. 2013;ePub ahead of print 2013/10/12. Google Scholar

  • [29] Care A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13(5):613-8. Google Scholar

  • [30] Hullinger TG, Montgomery RL, Seto AG, et al. Inhibition of mir-15 protects against cardiac ischemic injury. Circ Res. 2012;110(1):71-81. CrossrefGoogle Scholar

  • [31] Montgomery RL, Hullinger TG, Semus HM, et al. Therapeutic inhibition of mir-208a improves cardiac function and survival during heart failure. Circulation. 2011;124(14):1537-47. Google Scholar

  • [32] Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP Kinase signalling in fibroblasts. Nature. 2008;456(7224):980-4. Google Scholar

  • [33] Ucar A, Gupta SK, Fiedler J, et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun. 2012;3:1078. Google Scholar

  • [34] van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of mir-29 in cardiac fibrosis. Proc Natl Acad Sci USA. 2008;105(35):13027-32. CrossrefGoogle Scholar

  • [35] Murray C, Vos T, Lozano R, et al. Disability-adjusted life years (DALYS) for 291 diseases and injuries in 21 regions, 1990–2010: A Systematic analysis for the global burden of disease study 2010. Lancet. 2012;380:2197-223. Google Scholar

  • [36] Perrone-Filardi P, Musella F, Savarese G, et al. Coronary computed tomography: Current role and future perspectives for cardiovascular risk stratification. Eur Heart J Cardiovasc Imaging. 2012;13:453-8. CrossrefGoogle Scholar

  • [37] Hausleiter J, Meyer T, Hermann F, et al. Estimated radiation dose associated with cardiac CT angiography. J Am Med Assoc. 2009;301(5):500-7. Google Scholar

  • [38] Cipollone F, Felicioni L, Sazani R, et al. A unique microRNA signature associated with plaque instability in humans. Stroke. 2011;42:2556-63. CrossrefGoogle Scholar

  • [39] Zampetaki A, Willeit P, Tilling L, et al. Prospective study on circulating microRNAs and risk of myocardial infarction. J Am Coll Cardiol. 2012;60(4):290-9. CrossrefGoogle Scholar

  • [40] van Rooij E, Quiat D, Johnson BA, et al. A Family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell. 2009;17(5):662-73. CrossrefGoogle Scholar

  • [41] Adachi T, Nakanishi M, Otsuka Y, et al. Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clin Chem. 2010;56(7):1183-5. Google Scholar

  • [42] Ai J, Zhang R, Li Y, et al. Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun. 2010;391(1):73-7. CrossrefGoogle Scholar

  • [43] Cheng Y, Tan N, Yang J, et al. A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clin Sci. 2010;119(2):87-95. CrossrefGoogle Scholar

  • [44] Corsten MF, Dennert R, Jochems S, et al. Circulating microRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet. 2010;3(6):499-506. Google Scholar

  • [45] Gidlöf O, Andersson P, van der Pals J, Götberg M, Erlinge D. Cardiospecific microRNA plasma levels correlate with troponin and cardiac function in patients with ST elevation myocardial infarction, are selectively dependent on renal elimination, and can be detected in urine samples. Cardiology. 2011;118:217-26. CrossrefGoogle Scholar

  • [46] Kuwabara Y, Ono K, Horie T, et al. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet. 2011;4(4):446-54. Google Scholar

  • [47] Wang GK, Zhu JQ, Zhang JT, et al. Circulating microRNA: A novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010;31(6):659-66. CrossrefGoogle Scholar

  • [48] Widera C, Gupta SK, Lorenzen JM, et al. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J Mol Cell Cardiol. 2011;51(5):872-5. CrossrefGoogle Scholar

  • [49] Long G, Wang F, Duan Q, et al. Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction. Int J Biol Sci. 2012;8(6):811-8. Google Scholar

  • [50] Lu H-Q, Liang C, He Z-Q, Fan M, Wu Z-G. Circulating mir-214 is associated with the severity of coronary artery disease. J Geriatr Cardiol. 2013;10:34-8. Google Scholar

  • [51] Wang F, Long G, Zhao C, et al. Plasma microRNA-133a is a new marker for both acute myocardial infarction and underlying coronary artery stenosis. Journal of Translational Medicine. 2013;11:222. Google Scholar

  • [52] Lippi G, Mattiuzzi C, Cervellinm G. Circulating microRNAs (mirs) for diagnosing acute myocardial infarction: meta-analysis of available studies. Intl J Cardiol. 2013;167:277-305. CrossrefGoogle Scholar

  • [53] Weber M, Baker M, Patel R, Quyyumi A, Bao G, Searles C. MicroRNA expression profile in CAD patients and the impact of ACEI/ARB. Cardiol Res Pract. 2011;Article ID 532915. CrossrefGoogle Scholar

  • [54] Meder B, Keller A, Vogel B, et al. MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Res Cardiol. 2011;106:13-23. CrossrefGoogle Scholar

  • [55] Taurino C, Miller W, McBride M, et al. Gene expression profiling in whole blood of patients with coronary artery disease. Clin Sci. 2010;119:335-43. CrossrefGoogle Scholar

  • [56] Fichtlscherer S, De Rosa S, Fox H, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010;107(5):677-84. CrossrefGoogle Scholar

  • [57] Pritchard C, Kroh EM, Wood B, et al. Blood cell origin of circulating microRNAs: A cautionary note for cancer biomarker studies. Cancer Prev Res. 2012;5(3):492-7. CrossrefGoogle Scholar

  • [58] Hoekstra M, van der Lans C, Halvorsen B, et al. The Peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem Biophys Res Commun. 2010;394:792-7. CrossrefGoogle Scholar

  • [59] Takahashi Y, Satoh M, Minami Y, Tabuchi T, Itoh T, Nakamura M. Expression of mir-146a/b is associated with the toll-like receptor 4 signal in coronary artery disease: Effect of renin–angiotensin system blockade and statins on miRNA-146a/b and toll-like receptor 4 levels. Clin Sci. 2010;119:395-405. CrossrefGoogle Scholar

  • [60] Freedman J, Ercan B, Morin K, et al. The distribution of circulating microRNA and their relation to coronary disease. F1000Research. 2012;1:50. Google Scholar

  • [61] D’Alessandra Y, Devanna P, Limana F, et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J. 2010;31(22):2765-73. CrossrefGoogle Scholar

  • [62] Vogel B, Keller A, Frese K, et al. Refining diagnostic microRNA signatures by whole-miRNome kinetic analysis in acute myocardial infarction. Clin Chem. 2013;59(2):410-8. CrossrefGoogle Scholar

  • [63] Zile MR, Mehurg SM, Arroyo JE, Stroud RE, DeSantis SM, Spinale FG. Relationship between the temporal profile of plasma microRNA and left ventricular remodeling in patients after myocardial infarction. Circ Cardiovasc Genet. 2011;4(6):614-9. CrossrefGoogle Scholar

  • [64] Liebetrau C, Möllmann H, Dörr O, et al. Release kinetics of circulating muscle-enriched microRNAs in patients undergoing transcoronary ablation of septal hypertrophy. J Am Coll Cardiol. 2013;62(11):992-8. CrossrefGoogle Scholar

  • [65] Eitel I, Adams V, Dieterich P, et al. Relation of circulating microRNA-133a concentrations with myocardial damage and clinical prognosis in ST-elevation myocardial infarction. Am Heart J. 2012;164:706-14. Google Scholar

  • [66] Matsumoto S, Sakata Y, Nakatani D, et al. A Subset of circulating microRNAs are predictive for cardiac death after discharge for acute myocardial infarction. Biochem Biophys Res Commun.. 2012;427:280-4. Google Scholar

  • [67] Zhang R, Niu H, Bana T, et al. Elevated plasma microRNA-1 predicts heart failure after acute myocardial infarction. Intl J Cardiol. 2012;166(1):259-60. Google Scholar

  • [68] Devaux Y, Vausort M, McCann G, et al. MicroRNA-150 a novel marker of left ventricular remodeling after acute myocardial infarction. Circ Cardiovasc Genet. 2013;6:290-8. CrossrefGoogle Scholar

  • [69] Matsumoto S, Sakata Y, Suna S, et al. Circulating P53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. Circ Res. 2013;113:322-6. CrossrefGoogle Scholar

  • [70] Fukushima Y, Nakanishi M, Nonogi H, Goto Y, Iwai N. Assessment of plasma miRNAs in congestive heart failure. Circ J. 2011;75:336-40. CrossrefGoogle Scholar

  • [71] Voellenkle C, van Rooij J, Cappuzzello C, et al. MicroRNA signatures in peripheral blood mononuclear cells of chronic heart failure patients. Physiol Genomics. 2010;42:420-6. CrossrefGoogle Scholar

  • [72] Gupta M, Halley C, Duan Z-H, et al. Mirna-548c: A specific signature in circulating PBMCs from dilated cardiomyopathy patients. J Mol Cell Cardiol. 2013;62:131-41. Google Scholar

  • [73] Tijsen A, Creemers E, Moerland P, et al. Mir423-5p as a circulating biomarker for heart failure. Circ Res. 2010;106:1035-9. Google Scholar

  • [74] Goren Y, Kushnir M, Zafrir B, Tabak S, Lewis B, Amir O. Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail. 2012;14:147-54. CrossrefGoogle Scholar

  • [75] Ellis K, Cameron V, Troughton R, Frampton C, Ellmers L, Richards A. Circulating microRNAs as candidate markers to distinguish heart failure in breathless patients. Eur J Heart Fail. 2013;15:1138-47. CrossrefGoogle Scholar

  • [76] Tutarel O, Dangwal S, Bretthauer J, et al. Circulating mir-423_5p fails as a biomarker for systemic ventricular function in adults after atrial repair for transposition of the great arteries. Intl J Cardiol. 2013;167:63-6. Google Scholar

  • [77] Endo K, Naito Y, Ji X, et al. MicroRNA 210 as a biomarker for congestive heart failure. Biol Pharm Bull. 2013;36(1):48-54. CrossrefGoogle Scholar

  • [78] Qiang L, Hong L, Ningfu W, Huaihong C, Jing W. Expression of mir-126 and mir-508-5p in endothelial progenitor cells is associated with the prognosis of chronic heart failure patients. Intl J Cardiol. 2013;168:2082-8. Google Scholar

  • [79] Pilgrim T, Wyss T. Takotsubo cardiomyopathy or transient left ventricular apical ballooning syndrome: A systematic review. Intl J Cardiol. 2008;124:283-92. CrossrefGoogle Scholar

  • [80] Jaguszewski M, Osipova J, Ghadri J-R, et al. A signature of circulating microRNAs differentiates takotsubo cardiomyopathy from acute myocardial infarction. Eur Heart J. 2013;Advance Access published September 17, 2013. Google Scholar

  • [81] Marfella R, Di Filippo C, Potenza N, et al. Circulating microRNA Changes in heart failure patients treated with cardiac resynchronization therapy: responders vs. non-responders. Eur Heart J. 2013;15:1277-88. CrossrefGoogle Scholar

  • [82] García R, Villar A, Cobo M, et al. Circulating levels of mir-133a predict the regression potential of left ventricular hypertrophy after valve replacement surgery in patients with aortic stenosis. J Am Heart Assoc. 2013;2:e000211. Google Scholar

  • [83] Blondal T, Jensby Nielsen S, Baker A, et al. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods. 2012. Google Scholar

  • [84] Huang X, Yuan T, Tschannen M, et al. Characterization of human plasma-derived exosomal rNAS by deep sequencing. BMC genomics. 2013;14:319. CrossrefGoogle Scholar

  • [85] Wang K, Yuan Y, Cho JH, McClarty S, Baxter D, Galas DJ. Comparing the microRNA Spectrum between serum and plasma. PLoS One. 2012;7(7). Google Scholar

  • [86] Geiss GK, Bumgarner RE, Birditt B, et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol. 2008;26(3):317-25. CrossrefGoogle Scholar

  • [87] Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-Seq: An Assessment of technical reproducibility and comparison with gene expression arrays. Genome Research. 2008;18(9):1509-17. CrossrefGoogle Scholar

  • [88] Boeckel JN, Thome CE, Leistner D, Zeiher AM, Fichtlscherer S, Dimmeler S. Heparin selectively affects the quantification of microRNAs in human blood samples. Clin Chem. 2013;59(7):1125-7. CrossrefGoogle Scholar

  • [89] Cheng HH, Yi HS, Kim Y, et al. Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS One. 2013;8(6):e64795. CrossrefGoogle Scholar

  • [90] de Boer HC, van Solingen C, Prins J, et al. Aspirin treatment hampers the use of plasma microRNA-126 as a biomarker for the progression of vascular disease. Eur Heart J. 2013;34(44):3451-7. Google Scholar

  • [91] Kaudewitz D, Lee R, Willeit P, et al. Impact of intravenous heparin on quantification of circulating microRNAs in patients with coronary artery disease. Thromb Haemost. 2013;110(3):609-15. CrossrefGoogle Scholar

  • [92] Willeit P, Zampetaki A, Dudek K, et al. Circulating microRNAs as novel biomarkers for platelet activation. Circ Res. 2013;112(4):595-600. CrossrefGoogle Scholar

  • [93] McDonald JS, Milosevic D, Reddi HV, Grebe SK, Algeciras-Schimnich A. Analysis of circulating microRNA: Preanalytical and analytical challenges. Clin Chem. 2011;57(6):833-40. CrossrefGoogle Scholar

  • [94] Zampetaki A, Mayr M. Analytical challenges and technical limitations in assessing circulating miRNAs. Thromb Haemost. 2012;108(4):592-8. CrossrefGoogle Scholar

  • [95] Neuhoff V, Schill WB, Sternbach H. Micro-analysis of pure deoxyribonucleic acid-dependent ribonucleic acid polymerase from escherichia coli. Action of heparin and rifampicin on structure and function. Biochemical J. 1970;117(3):623-31. Google Scholar

  • [96] Satsangi J, Jewell DP, Welsh K, Bunce M, Bell JI. Effect of heparin on polymerase chain reaction. Lancet. 1994;343(8911):1509-10. Google Scholar

  • [97] Yokota M, Tatsumi N, Nathalang O, Yamada T, Tsuda I. Effects of heparin on polymerase chain reaction for blood white cells. J Clin Lab Anal. 1999;13(3):133-40. CrossrefGoogle Scholar

  • [98] Kim DJ, Linnstaedt S, Palma J, et al. Plasma Components affect accuracy of circulating cancer-related microRNA quantitation. J Mol Diagn : JMD. 2012;14(1):71-80. CrossrefGoogle Scholar

  • [99] Frelinger AL, 3rd, Furman MI, Linden MD, et al. Residual arachidonic acid-induced platelet activation via an adenosine diphosphate-dependent but cyclooxygenase-1- and cyclooxygenase-2-independent pathway: A 700-patient study of aspirin resistance. Circulation. 2006;113(25):2888-96. Google Scholar

  • [100] Landry P, Plante I, Ouellet DL, Perron MP, Rousseau G, Provost P. Existence of a microRNA pathway in anucleate platelets. Nat Struct Mol Biol. 2009;16(9):961-6. CrossrefGoogle Scholar

  • [101] Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64(15):5245-50. CrossrefGoogle Scholar

  • [102] Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):RESEARCH0034. CrossrefGoogle Scholar

  • [103] Kang K, Peng X, Luo J, Gou D. Identification of circulating miRNA biomarkers based on global quantitative real-time PCR profiling. J Anim Sci Biotechnol. 2012;3(1):4. CrossrefGoogle Scholar

  • [104] Pizzamiglio S, Bottelli S, Ciniselli CM, et al. A normalization strategy for the analysis of plasma microRNA qPCR data in colorectal cancer. Int J Cancer. 2013. Google Scholar

  • [105] Mestdagh P, Van Vlierberghe P, De Weer A, et al. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol. 2009;10(6):R64.CrossrefGoogle Scholar

About the article

Received: 2014-02-28

Accepted: 2014-05-04

Published Online: 2014-09-12


Citation Information: microRNA Diagnostics and Therapeutics, ISSN (Online) 2084-6843, DOI: https://doi.org/10.2478/micrnat-2014-0002.

Export Citation

© 2014 Vicky A Cameron, Anna P Pilbrow. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in