Jump to ContentJump to Main Navigation
Show Summary Details
More options …

microRNA Diagnostics and Therapeutics

Ed. by Sempere, Lorenzo

1 Issue per year

Emerging Science

Open Access
See all formats and pricing
More options …

From life to death: microRNAs in the fine tuning of the heart

Sayantan Nath / S I Rizvi / Munish Kumar
  • Corresponding author
  • Department of Biochemistry, University of Allahabad-211002, India
  • Department of Biotechnology, Assam University, Silchar-788011, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-12-12 | DOI: https://doi.org/10.2478/micrnat-2014-0003


The heart is one of the most important vital organs, and any malfunctioning of the heart and its blood vessels may contribute to cardiovascular disorders. Diseases of the cardiovascular system represent the most common cause of human morbidity and mortality around the globe. Thus, there is always a need for innovative new therapies and diagnostics for cardiovascular disorders. In the past decades, a plethora of tiny, endogenous, singlestranded RNA sequences called microRNAs (miRNAs) has been studied meticulously in cardiovascular development and pathophysiology, providing a new dimension to the heart’s biology. miRNAs posttranscriptional inhibit the gene expression of specific mRNA targets through Watson– Crick base pairing between the miRNA “seed region” and the 3′ untranslated regions (UTRs) of target mRNAs. Better recognized as “master switches”, miRNAs are emerging as vital regulators of mammalian cardiovascular development and disease and thus are helpful in understanding therapeutic targets and diagnostics for a variety of cardiovascular disorders. In this review, a detailed discussion of the roles of various microRNAs in cardiovascular development and pathophysiology with potential therapeutics is considered.

Keywords : cardiovascular diseases; cardiac hypertrophy; dicer; foetal heart; microRNA (miRNA, miR); microRNAbased therapy


  • [1] Van Rooij E, Olson EN. MicroRNAs: Powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest. 2007; 117: 2369-2376. CrossrefGoogle Scholar

  • [2] Liu N, Olson EN. MicroRNA regulatory networks in cardiovascular development. Dev Cell. 2010; 18: 510-525. CrossrefGoogle Scholar

  • [3] Thum T. MicroRNA therapeutics in cardiovascular medicine. EMBO Mol Med. 2012; 4: 3-14. CrossrefGoogle Scholar

  • [4] Small EM, Frost RJ, Olson EN. MicroRNAs add a new dimension to cardiovascular disease. Circulation. 2010; 121: 1022-1032. CrossrefGoogle Scholar

  • [5] van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007; 316: 575-579. CrossrefGoogle Scholar

  • [6] van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A. 2006; 103: 18255-18260. CrossrefGoogle Scholar

  • [7] Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res. 2007; 100: 416-424. CrossrefGoogle Scholar

  • [8] Tatsuguchi M, Seok HY, Callis TE, Thomson JM, Chen J.F, Newman M, Rojas M, Hammond SM, Wang DZ. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol. 2007; 42: 1137-1141. CrossrefGoogle Scholar

  • [9] Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND. et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007; 13: 613-618. Google Scholar

  • [10] Cheng Y, Ji R, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C. MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy?. Am J Pathol. 2007; 170:1831-1840. CrossrefGoogle Scholar

  • [11] Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW, Doevendans PA, Mummery CL, Borlak J, Haverich A. et al. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation. 2007; 116: 258-267. CrossrefGoogle Scholar

  • [12] Ikeda S, Kong SW, Lu J, Bisping E, Zhang H, Allen PD, Golub TR, Pieske B, Pu WT. Altered microRNA expression in human heart disease. Physiol Genomics. 2007; 31: 367-373. CrossrefGoogle Scholar

  • [13] Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res. 2007; 100:1579-1588. CrossrefGoogle Scholar

  • [14] Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H, et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med. 2007; 13: 486-491. Google Scholar

  • [15] Ambros V. The functions of animal microRNAs. Nature. 2004; 431: 350-355. Google Scholar

  • [16] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993; 75: 843-854. Google Scholar

  • [17] Wang Z, Luo X, Lu Y, Yang B. miRNAs at the heart of the matter. J Mol Med (Berl). 2008; 86:771-783. CrossrefGoogle Scholar

  • [18] Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development. 2005; 132: 4653-4662. CrossrefGoogle Scholar

  • [19] Dalmay T. MicroRNAs and cancer. J Intern Med. 2008; 263: 366-375. Google Scholar

  • [20] Kumar M, Lu Z, Takwi AA, Chen W, Callander NS, Ramos KS, Young KH, Li Y. Negative regulation of the tumor suppressor p53 gene by microRNAs. Oncogene. 2011; 30: 843-853. CrossrefGoogle Scholar

  • [21] Lukiw WJ. Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport. 2007; 18: 297-300. CrossrefGoogle Scholar

  • [22] Holohan KN, Lahiri DK, Schneider BP, Foroud T, Saykin AJ. Functional microRNAs in Alzheimer’s disease and cancer: differential regulation of common mechanisms and pathway. Front Genet. 2012; 3: 323. Google Scholar

  • [23] Kumar M, Nath S, Prasad HK, Sharma GD, Li Y. MicroRNAs: a new ray of hope for diabetes mellitus. Protein Cell. 2012; 3: 726-738. CrossrefGoogle Scholar

  • [24] van de Bunt M, Gaulton KJ, Parts L, Moran I, Johnson PR, Lindgren CM, Ferrer J, Gloyn AL, McCarthy MI. The miRNA Profile of Human Pancreatic Islets and Beta-Cells and Relationship to Type 2 Diabetes Pathogenesis. PLoS One. 2013; 8: e55272. Google Scholar

  • [25] Broderick JA, Zamore PD. MicroRNA therapeutics. Gene Ther. 2011; 18: 1104-1110. CrossrefGoogle Scholar

  • [26] Baroukh NN, Van Obberghen E. Function of microRNA-375 and microRNA-124a in pancreas and brain. FEBS J. 2009; 276: 6509-6521. Google Scholar

  • [27] Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell. 2007; 130: 89-100. CrossrefGoogle Scholar

  • [28] Hennessy E, O’Driscoll L. Molecular medicine of microRNAs: structure, function and implications for diabetes. Expert Rev Mol Med. 2008; 10: e24. CrossrefGoogle Scholar

  • [29] Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature. 2011; 469: 336-342. Google Scholar

  • [30] Cordes KR, Srivastava D. MicroRNA regulation of cardiovascular development. Circ Res. 2009; 104: 724-732. CrossrefGoogle Scholar

  • [31] Thum T. Cardiac dissonance without conductors: how dicer depletion provokes chaos in the heart. Circulation. 2008; 118: 1524-1527. CrossrefGoogle Scholar

  • [32] Rao PK, Toyama Y, Chiang .R, Gupta S, Bauer M, Medvid R, Reinhardt F, Liao R, Krieger M, Jaenisch R. et al., Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ Res. 2009; 105: 585-594. CrossrefGoogle Scholar

  • [33] Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, Mercatanti A, Hammond S, Rainaldi G. MicroRNAs modulate the angiogenic properties of HUVECs. Blood. 2006; 108: 3068-3071. CrossrefGoogle Scholar

  • [34] Chen JF, Murchison EP, Tang R, Callis TE, Tatsuguchi M, Deng Z, Rojas M, Hammond SM, Schneider MD, Selzman CH. et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci U S A. 2008; 105: 2111-2116. CrossrefGoogle Scholar

  • [35] Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth A.N., Tsuchihashi T., McManus M.T., Schwartz R.J., Srivastava D., Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2, Cell, 2007, 129, 303-317. Google Scholar

  • [36] da Costa Martins P.A., Bourajjaj M, Gladka M, Kortland M, van Oort RJ, Pinto YM, Molkentin JD, De Windt LJ. Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation. 2008; 118: 1567-1576. CrossrefGoogle Scholar

  • [37] Ambros V. MicroRNAs: genetically sensitized worms reveal new secrets. Curr Biol. 2010; 20: R598-600. CrossrefGoogle Scholar

  • [38] Liu N, Williams AH, Kim Y, McAnally J, Bezprozvannaya S, Sutherland LB, Richardson JA, Bassel-Duby R, Olson EN. An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc Natl Acad Sci U S A. 2007; 104: 20844-20849. Google Scholar

  • [39] Meder B, Katus HA, Rottbauer W. Right into the heart of microRNA-133a. Genes Dev. 2008; 22: 3227-3231. Google Scholar

  • [40] Cordes KR, Srivastava D, Ivey KN. MicroRNAs in cardiac development, Pediatr Cardiol. 2010; 31: 349-356. CrossrefGoogle Scholar

  • [41] Latronico MV, Catalucci D, Condorelli G. Emerging role of microRNAs in cardiovascular biology. Circ Res. 2007; 101: 1225-1236. CrossrefGoogle Scholar

  • [42] Wang D, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E, Krieg PA, Olson EN. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell. 2001; 105: 851-862. CrossrefGoogle Scholar

  • [43] Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005; 436: 214-220. Google Scholar

  • [44] Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006. 38: 228-233. Google Scholar

  • [45] Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 2008; 22: 3242-3254. Google Scholar

  • [46] Ivey KN, Muth A, Arnold J, King FW, Yeh RF, Fish JE, Hsiao EC, Schwartz RJ, Conklin BR, Bernstein HS. et al., MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell. 2008; 2: 219-229. CrossrefGoogle Scholar

  • [47] Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DY, Srivastava D. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008; 15: 272-284. Google Scholar

  • [48] Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN. The endothelialspecific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008; 15: 261-271. Google Scholar

  • [49] Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, Lee TH, Miano JM, Ivey KN, Srivastava D. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009; 460:705-710. Google Scholar

  • [50] Xin M, Small EM, Sutherland LB, Qi X, McAnally J, Plato CF, Richardson JA, Bassel-Duby R, Olson EN. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev. 2009; 23:2166-2178. Google Scholar

  • [51] Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K. et al., Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002; 99: 15524-15529. Google Scholar

  • [52] Mishra PK, Tyagi N, Kumar M, Tyagi SC. MicroRNAs as a therapeutic target for cardiovascular diseases. J Cell Mol Med. 2009; 13: 778-789. CrossrefGoogle Scholar

  • [53] Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H. Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev. 2007; 12: 331-343. CrossrefGoogle Scholar

  • [54] Catalucci D, Gallo P, Condorelli G. MicroRNAs in cardiovascular biology and heart disease. Circ Cardiovasc Genet. 2009; 2: 402-408. CrossrefGoogle Scholar

  • [55] McKinsey TA, Olson EN. Toward transcriptional therapies for the failing heart: chemical screens to modulate genes. J Clin Invest. 2005; 115: 538-546. CrossrefGoogle Scholar

  • [56] Da Costa Martins PA, De Windt LJ. MicroRNAs in control of cardiac hypertrophy. Cardiovasc Res. 2012; 93: 563-572. CrossrefGoogle Scholar

  • [57] Abraham WT, Gilbert EM, Lowes BD, Minobe WA, Larrabee P, Roden RL, Dutcher D, Sederberg J, Lindenfeld JA, Wolfel EE. et al., Coordinate changes in Myosin heavy chain isoform gene expression are selectively associated with alterations in dilated cardiomyopathy phenotype. Mol Med. 2002; 8: 750-760. Google Scholar

  • [58] van Rooij E, Marshall WS, Olson EN. Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ Res. 2008; 103: 919-928. CrossrefGoogle Scholar

  • [59] Morkin E. Control of cardiac myosin heavy chain gene expression. Microsc Res Tech. 2000; 50: 522-531. CrossrefGoogle Scholar

  • [60] Ikeda S, He A, Kong SW, Lu J, Bejar R, Bodyak N, Lee KH, Ma Q, Kang PM, Golub TR. et al., MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol Cell Biol. 2009; 29: 2193-2204. Google Scholar

  • [61] Li Q, Song XW, Zou J, Wang GK, Kremneva E, Li XQ, Zhu N, Sun T, Lappalainen P, Yuan WJ. et al., Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy. J Cell Sci. 2010; 123: 2444-2452. Google Scholar

  • [62] Elia L, Contu R, Quintavalle M, Varrone F, Chimenti C, Russo MA, Cimino V, De Marinis L, Frustaci A, Catalucci D. et al., Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation. 2009; 120: 2377-2385. Google Scholar

  • [63] Topkara VK, Mann DL. Clinical applications of miRNAs in cardiac remodeling and heart failure. Per Med. 2010; 7: 531-548. CrossrefGoogle Scholar

  • [64] Wang K, Long B, Zhou J, Li PF. miR-9 and NFATc3 regulate myocardin in cardiac hypertrophy. J Biol Chem. 2010; 285: 11903-11912. Google Scholar

  • [65] Yang Y, Ago T, Zhai P, Abdellatif M, Sadoshima J. Thioredoxin 1 negatively regulates angiotensin II-induced cardiac hypertrophy through upregulation of miR-98/let-7. Circ Res. 2011; 108: 305-313. Google Scholar

  • [66] Han M, Yang Z, Sayed D, He M, Gao S, Lin L, Yoon S, Abdellatif M. GATA4 expression is primarily regulated via a miR-26b-dependent post-transcriptional mechanism during cardiac hypertrophy. Cardiovasc Res. 2012; 93: 645-654. CrossrefGoogle Scholar

  • [67] Callis TE, Pandya K, Seok HY, Tang RH, Tatsuguchi M, Huang ZP, Chen JF, Deng Z, Gunn B, Shumate J. et al., MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest. 2009;119: 2772-2786. Google Scholar

  • [68] Frost RJ, van Rooij E. miRNAs as therapeutic targets in ischemic heart disease. J Cardiovasc Transl Res. 2010; 3: 280-289. CrossrefGoogle Scholar

  • [69] Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S. et al., MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008; 456:980-984. Google Scholar

  • [70] Sayed D, Rane S, Lypowy J, He M, Chen IY, Vashistha H, Yan L, Malhotra A, Vatner D, Abdellatif M. MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Mol Biol Cell. 2008; 19: 3272-3282. Google Scholar

  • [71] Lin Z, Murtaza I, Wang K, Jiao J, Gao J, Li PF. miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc Natl Acad Sci U S A. 2009; 106: 12103-12108. CrossrefGoogle Scholar

  • [72] Shieh J.T., Huang Y., Gilmore J., Srivastava D., Elevated miR-499 levels blunt the cardiac stress response, PLoS One, 2011, 6, e19481. Google Scholar

  • [73] da Costa Martins PA, Salic K, Gladka MM, Armand AS, Leptidis S, el Azzouzi H, Hansen A, Coenen-de Roo CJ, Bierhuizen MF, van der Nagel R. et al., MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nat Cell Biol. 2010; 12: 1220-1227. Google Scholar

  • [74] Rane S, He M, Sayed D, Yan L, Vatner D, Abdellatif M. An antagonism between the AKT and beta-adrenergic signaling pathways mediated through their reciprocal effects on miR-199a-5p. Cell Signal. 2010; 22: 1054-1062. Google Scholar

  • [75] Diez J. Do microRNAs regulate myocardial fibrosis?. Nat Clin Pract Cardiovasc Med. 2009; 6:88-89. Google Scholar

  • [76] Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, van der Made I, Herias V, van Leeuwen RE, Schellings MW, Barenbrug P. et al., miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res. 2009; 104: 170-178, 176p following 178. Google Scholar

  • [77] van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A. 2008; 105: 13027-13032. Google Scholar

  • [78] Roy S, Khanna S, Hussain SR, Biswas S, Azad A, Rink C, Gnyawali S, Shilo S, Nuovo GJ, Sen CK. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res. 2009; 82:21-29. CrossrefGoogle Scholar

  • [79] Yang B, Lu Y, Wang Z. Control of cardiac excitability by microRNAs. Cardiovasc Res. 2008; 79: 571-580. PubMedCrossrefGoogle Scholar

  • [80] Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med. 1999; 340: 115-126. Google Scholar

  • [81] Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res. 2008; 79: 581-588. CrossrefGoogle Scholar

  • [82] Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci U S A. 2008; 105: 1516-1521. Google Scholar

  • [83] Rayner KJ, Moore KJ. The plaque “micro” environment: microRNAs control the risk and the development of atherosclerosis. Curr Atheroscler Rep. 2012; 14: 413-421. CrossrefGoogle Scholar

  • [84] Elia L, Quintavalle M, Zhang J, Contu R, Cossu L, Latronico MV, Peterson KL, Indolfi C, Catalucci D, Chen J. et al., The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease. Cell Death Differ. 2009; 16: 1590-1598. Google Scholar

  • [85] Ceppi M, Pereira PM, Dunand-Sauthier I, Barras E, Reith W, Santos MA, Pierre P. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci U S A. 2009; 106: 2735-2740. Google Scholar

  • [86] Wei Y, Nazari-Jahantigh M, Neth P, Weber C, Schober A. MicroRNA-126, -145, and -155: a therapeutic triad in atherosclerosis?. Arterioscler Thromb Vasc Biol. 2013; 33: 449-454. Google Scholar

  • [87] Gao W, He HW, Wang ZM, Zhao H, Lian XQ, Wang YS, Zhu J, Yan JJ, Zhang DG, Yang Z.J.et al., Plasma levels of lipometabolismrelated miR-122 and miR-370 are increased in patients with hyperlipidemia and associated with coronary artery disease. Lipids Health Dis. 2012; 11: 55. Google Scholar

  • [88] Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Roxe T, Muller-Ardogan M. et al., Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010; 107:677-684. CrossrefGoogle Scholar

  • [89] Ramirez CM, Davalos A, Goedeke L, Salerno AG, Warrier N, Cirera-Salinas D, Suarez Y, Fernandez-Hernando C. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol. 2011; 31:2707-2714. Google Scholar

  • [90] Rayner KJ, Esau CC, Hussain FN, McDaniel AL, Marshall SM, van Gils JM, Ray TD, Sheedy FJ, Goedeke L, Liu X. et al., Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature. 2011; 478: 404-407. Google Scholar

  • [91] Kuhnert F, Mancuso MR, Hampton J, Stankunas K, Asano T, Chen CZ, Kuo CJ. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development. 2008; 135:3989-3993. Google Scholar

  • [92] Fasanaro P, D’Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, Capogrossi MC, Martelli F. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem. 2008; 283: 15878-15883. Google Scholar

  • [93] Pulkkinen K, Malm T, Turunen M, Koistinaho J, Yla-Herttuala S. Hypoxia induces microRNA miR-210 in vitro and in vivo ephrin-A3 and neuronal pentraxin 1 are potentially regulated by miR-210. FEBS Lett. 2008; 582: 2397-2401. Google Scholar

  • [94] Kim HW, Haider HK, Jiang S, Ashraf M. Ischemic preconditioning augments survival of stem cells via miR-210 expression by targeting caspase-8-associated protein 2. J Biol Chem. 2009; 284: 33161-33168. Google Scholar

  • [95] Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K. et al., MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science. 2009. 324: 1710-1713. 96] Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, Furth EE, Lee WM, Enders GH, Mendell JT. et al., Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet. 2006; 38: 1060-1065. Google Scholar

  • [97] Fox CS, Coady S, Sorlie PD, D’Agostino RB, Sr, Pencina MJ, Vasan RS, Meigs JB, Levy D, Savage PJ. Increasing cardiovascular disease burden due to diabetes mellitus: the Framingham Heart Study, Circulation. 2007; 115: 1544-1550. CrossrefGoogle Scholar

  • [98] Bouzeghrane F, Reinhardt DP, Reudelhuber TL, Thibault G. Enhanced expression of fibrillin-1, a constituent of the myocardial extracellular matrix in fibrosis. Am J Physiol Heart Circ Physiol. 2005; 289: H982-991. Google Scholar

  • [99] Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol. 1999; 277: C1-9. CrossrefGoogle Scholar

  • [100] Long G, Wang F, Duan Q, Chen F, Yang S, Gong W, Wang Y, Chen C, Wang DW. Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction. Int J Biol Sci. 2012; 8: 811-818. Google Scholar

  • [101] Cheng Y, Liu X, Zhang S, Lin Y, Yang J, Zhang C. MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol. 2009; 47: 5-14. Google Scholar

  • [102] Rane S, He M, Sayed D, Vashistha H, Malhotra A, Sadoshima J, Vatner DE, Vatner SF, Abdellatif M. Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res. 2009; 104: 879-886. Google Scholar

  • [103] Tang X, Tang G, Ozcan S. Role of microRNAs in diabetes. Biochim Biophys Acta. 2008; 1779: 697-701. Google Scholar

  • [104] Katare R, Caporali A, Zentilin L, Avolio E, Sala-Newby G, Oikawa A, Cesselli D, Beltrami AP, Giacca M, Emanueli C. et al., Intravenous gene therapy with PIM-1 via a cardiotropic viral vector halts the progression of diabetic cardiomyopathy through promotion of prosurvival signaling. Circ Res. 2011; 108: 1238-1251. Google Scholar

  • [105] Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. 2006; 126: 1203-1217. CrossrefGoogle Scholar

  • [106] van Rooij E, Olson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov. 2012; 11: 860-872. CrossrefGoogle Scholar

  • [107] Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007; 4: 721-726. CrossrefGoogle Scholar

  • [108] Divakaran V, Mann DL. The emerging role of microRNAs in cardiac remodeling and heart failure. Circ Res. 2008; 103: 1072-1083. CrossrefGoogle Scholar

  • [109] Mukhopadhyay P., Pacher P., Das D.K., MicroRNA signatures of resveratrol in the ischemic heart, Ann N Y Acad Sci, 2011, 1215: 109-116. Google Scholar

  • [110] Mukhopadhyay P, Mukherjee S, Ahsan K, Bagchi A, Pacher P, Das DK. Restoration of altered microRNA expression in the ischemic heart with resveratrol. PLoS One. 2010; 5: e15705. CrossrefGoogle Scholar

  • [111] Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007; 131: 861-872. CrossrefGoogle Scholar

  • [112] Hatfield S, Ruohola-Baker H. microRNA and stem cell function. Cell Tissue Res. 2008; 331: 57-66. Google Scholar

  • [113] Takaya T, Nishi H, Horie T, Ono K, Hasegawa K. Roles of microRNAs and myocardial cell differentiation. Prog Mol Biol Transl Sci. 2012; 111: 139-152. CrossrefGoogle Scholar

  • [114] Passier R, van Laake LW, Mummery CL. Stem-cell-based therapy and lessons from the heart. Nature. 2008; 453:322-329. Google Scholar

  • [115] Mishra PK, Tyagi N, Kundu S, Tyagi SC. MicroRNAs are involved in homocysteine-induced cardiac remodeling, Cell Biochem Biophys. 2009; 55: 153-162.CrossrefGoogle Scholar

About the article

Received: 2014-01-01

Accepted: 2014-03-08

Published Online: 2014-12-12

Citation Information: microRNA Diagnostics and Therapeutics, Volume 1, Issue 1, ISSN (Online) 2084-6843, DOI: https://doi.org/10.2478/micrnat-2014-0003.

Export Citation

© 2014 Sayantan Nath et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in