Jump to ContentJump to Main Navigation
Show Summary Details
More options …

microRNA Diagnostics and Therapeutics

Ed. by Sempere, Lorenzo

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2084-6843
See all formats and pricing
More options …

miRNA function and modulation in stem cells and cancer stem cells

Andrew J. DeCastro
  • Program in Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ James DiRenzo
  • Corresponding author
  • Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-12-17 | DOI: https://doi.org/10.2478/micrnat-2014-0004

Abstract

Stem cells belong to a unique class of cells that is collectively responsible for the development and subsequent maintenance of all tissues comprising multicellular organisms. These cells possess unique characteristics that allow them to remain in a pluripotent state, while also continuing to generate differentiated cells. microRNAs, a specialized class of non-coding RNAs, are integral components of the network of pathways that modulates this combination of abilities. This review highlights recent discoveries about the roles miRNAs play in governing stem cell phenotype, and discusses the potential therapeutic utility that miRNAs may have in the treatment of multiple diseases. Additionally, it addresses a novel mode of regulation of stem cell phenotype through lincRNA-mediated modulation of select miRNAs, and the role of secreted, stem cell-derived miRNAs in exerting a paracrine influence on surrounding non-stem cells.

Keywords : microRNAs; long non-coding RNAs; cancer stem cells; stemness; TP53; exosome; microvesicles

References

  • [1] Vaish M., Mismatch repair deficiencies transforming stem cells into cancer stem cells and therapeutic implications, Molecular cancer, 2007, 6, 26. Google Scholar

  • [2] White J., Dalton S., Cell cycle control of embryonic stem cells, Stem cell reviews, 2005, 1, 131-138. Google Scholar

  • [3] Melton C., Blelloch R., MicroRNA Regulation of Embryonic Stem Cell Self-Renewal and Differentiation, Advances in experimental medicine and biology, 2010, 695, 105-117. Google Scholar

  • [4] Hatfield S., Ruohola-Baker H., microRNA and stem cell function, Cell and tissue research, 2008, 331, 57-66. Google Scholar

  • [5] Bentwich I., Avniel A., Karov Y., Aharonov R., Gilad S., Barad O., Barzilai A., Einat P., Einav U., Meiri E., et al., Identification of hundreds of conserved and nonconserved human microRNAs, Nature genetics, 2005, 37, 766-770. CrossrefGoogle Scholar

  • [6] Lewis B.P., Burge C.B., Bartel D.P., Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets, Cell, 2005, 120, 15-20. CrossrefGoogle Scholar

  • [7] Friedman R.C., Farh K.K., Burge C.B., Bartel D.P., Most mammalian mRNAs are conserved targets of microRNAs, Genome research, 2009, 19, 92-105. Google Scholar

  • [8] Kim V.N., MicroRNA biogenesis: coordinated cropping and dicing, Nature reviews. Molecular cell biology, 2005, 6, 376-385. Google Scholar

  • [9] Krol J., Loedige I., Filipowicz W., The widespread regulation of microRNA biogenesis, function and decay, Nature reviews. Genetics, 2010, 11, 597-610. Google Scholar

  • [10] Tay Y., Zhang J., Thomson A.M., Lim B., Rigoutsos I., MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation, Nature, 2008, 455, 1124-1128. Google Scholar

  • [11] Hollstein M., Sidransky D., Vogelstein B., Harris C.C., p53 mutations in human cancers, Science, 1991, 253, 49-53. Google Scholar

  • [12] Vogelstein B., Lane D., Levine A.J., Surfing the p53 network, Nature, 2000, 408, 307-310. Google Scholar

  • [13] Levine A.J., Hu W., Feng Z., The P53 pathway: what questions remain to be explored?, Cell death and differentiation, 2006, 13, 1027-1036. PubMedGoogle Scholar

  • [14] Vigneron A., Vousden K.H., p53, ROS and senescence in the control of aging, Aging, 2010, 2, 471-474. Google Scholar

  • [15] Vousden K.H., Lu X., Live or let die: the cell’s response to p53, Nature reviews. Cancer, 2002, 2, 594-604. CrossrefGoogle Scholar

  • [16] Ko L.J., Prives C., p53: puzzle and paradigm, Genes & development, 1996, 10, 1054-1072. Google Scholar

  • [17] Prives C., Hall P.A., The p53 pathway, The Journal of pathology, 1999, 187, 112-126. Google Scholar

  • [18] Riley T., Sontag E., Chen P., Levine A., Transcriptional control of human p53-regulated genes, Nature reviews. Molecular cell biology, 2008, 9, 402-412. Google Scholar

  • [19] Vousden K.H., Prives C., Blinded by the Light: The Growing Complexity of p53, Cell, 2009, 137, 413-431. Google Scholar

  • [20] Suzuki H.I., Yamagata K., Sugimoto K., Iwamoto T., Kato S., Miyazono K., Modulation of microRNA processing by p53, Nature, 2009, 460, 529-533. Google Scholar

  • [21] Qin H., Yu T., Qing T., Liu Y., Zhao Y., Cai J., Li J., Song Z., Qu X., Zhou P., et al., Regulation of apoptosis and differentiation by p53 in human embryonic stem cells, The Journal of biological chemistry, 2007, 282, 5842-5852. Google Scholar

  • [22] Lin T., Chao C., Saito S., Mazur S.J., Murphy M.E., Appella E., Xu Y., p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression, Nature cell biology, 2005, 7, 165-171. Google Scholar

  • [23] Sabapathy K., Klemm M., Jaenisch R., Wagner E.F., Regulation of ES cell differentiation by functional and conformational modulation of p53, The EMBO journal, 1997, 16, 6217-6229. CrossrefGoogle Scholar

  • [24] He L., He X., Lim L.P., de Stanchina E., Xuan Z., Liang Y., Xue W., Zender L., Magnus J., Ridzon D., et al., A microRNA component of the p53 tumour suppressor network, Nature, 2007, 447, 1130-1134. Google Scholar

  • [25] Chang T.C., Wentzel E.A., Kent O.A., Ramachandran K., Mullendore M., Lee K.H., Feldmann G., Yamakuchi M., Ferlito M., Lowenstein C.J., et al., Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis, Molecular cell, 2007, 26, 745-752. CrossrefGoogle Scholar

  • [26] Raver-Shapira N., Marciano E., Meiri E., Spector Y., Rosenfeld N., Moskovits N., Bentwich Z., Oren M., Transcriptional activation of miR-34a contributes to p53-mediated apoptosis, Molecular cell, 2007, 26, 731-743. CrossrefGoogle Scholar

  • [27] Tarasov V., Jung P., Verdoodt B., Lodygin D., Epanchintsev A., Menssen A., Meister G., Hermeking H., Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest, Cell Cycle, 2007, 6, 1586-1593. CrossrefGoogle Scholar

  • [28] Tarantino C., Paolella G., Cozzuto L., Minopoli G., Pastore L., Parisi S., Russo T., miRNA 34a, 100, and 137 modulate differentiation of mouse embryonic stem cells, FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2010, 24, 3255-3263. CrossrefGoogle Scholar

  • [29] Aranha M.M., Santos D.M., Sola S., Steer C.J., Rodrigues C.M., miR-34a regulates mouse neural stem cell differentiation, PloS one, 2011, 6, e21396. Google Scholar

  • [30] Hermeking H., The miR-34 family in cancer and apoptosis, Cell death and differentiation, 2010, 17, 193-199. Google Scholar

  • [31] Jain A.K., Allton K., Iacovino M., Mahen E., Milczarek R.J., Zwaka T.P., Kyba M., Barton M.C., p53 regulates cell cycle and microRNAs to promote differentiation of human embryonic stem cells, PLoS biology, 2012, 10, e1001268. CrossrefGoogle Scholar

  • [32] Yamakuchi M., Ferlito M., Lowenstein C.J., miR-34a repression of SIRT1 regulates apoptosis, Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13421-13426. Google Scholar

  • [33] Saunders L.R., Sharma A.D., Tawney J., Nakagawa M., Okita K., Yamanaka S., Willenbring H., Verdin E., miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues, Aging, 2010, 2, 415-431. Google Scholar

  • [34] Liu T., Liu P.Y., Marshall G.M., The critical role of the class III histone deacetylase SIRT1 in cancer, Cancer research, 2009, 69, 1702-1705. Google Scholar

  • [35] Calvanese V., Lara E., Suarez-Alvarez B., Abu Dawud R., Vazquez-Chantada M., Martinez-Chantar M.L., Embade N., Lopez-Nieva P., Horrillo A., Hmadcha A., et al., Sirtuin 1 regulation of developmental genes during differentiation of stem cells, Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13736-13741. Google Scholar

  • [36] Xu N., Papagiannakopoulos T., Pan G., Thomson J.A., Kosik K.S., MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells, Cell, 2009, 137, 647-658. Google Scholar

  • [37] Choi Y.J., Lin C.P., Ho J.J., He X., Okada N., Bu P., Zhong Y., Kim S.Y., Bennett M.J., Chen C., et al., miR-34 miRNAs provide a barrier for somatic cell reprogramming, Nature cell biology, 2011, 13, 1353-1360. Google Scholar

  • [38] Hong H., Takahashi K., Ichisaka T., Aoi T., Kanagawa O., Nakagawa M., Okita K., Yamanaka S., Suppression of induced pluripotent stem cell generation by the p53-p21 pathway, Nature, 2009, 460, 1132-1135. Google Scholar

  • [39] Richards M., Tan S.P., Tan J.H., Chan W.K., Bongso A., The transcriptome profile of human embryonic stem cells as defined by SAGE, Stem Cells, 2004, 22, 51-64. CrossrefGoogle Scholar

  • [40] Viswanathan S.R., Daley G.Q., Gregory R.I., Selective blockade of microRNA processing by Lin28, Science, 2008, 320, 97-100. Google Scholar

  • [41] Yu F., Yao H., Zhu P., Zhang X., Pan Q., Gong C., Huang Y., Hu X., Su F., Lieberman J., et al., let-7 regulates self renewal and tumorigenicity of breast cancer cells, Cell, 2007, 131, 1109-1123. Google Scholar

  • [42] King C.E., Cuatrecasas M., Castells A., Sepulveda A.R., Lee J.S., Rustgi A.K., LIN28B promotes colon cancer progression and metastasis, Cancer research, 2011, 71, 4260-4268. CrossrefGoogle Scholar

  • [43] Li L., Wang L., Li L., Wang Z., Ho Y., McDonald T., Holyoake T.L., Chen W., Bhatia R., Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib, Cancer cell, 2012, 21, 266-281. CrossrefGoogle Scholar

  • [44] Lodygin D., Tarasov V., Epanchintsev A., Berking C., Knyazeva T., Korner H., Knyazev P., Diebold J., Hermeking H., Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer, Cell Cycle, 2008, 7, 2591-2600. CrossrefGoogle Scholar

  • [45] Zenz T., Mohr J., Eldering E., Kater A.P., Buhler A., Kienle D., Winkler D., Durig J., van Oers M.H., Mertens D., et al., miR-34a as part of the resistance network in chronic lymphocytic leukemia, Blood, 2009, 113, 3801-3808. CrossrefGoogle Scholar

  • [46] Sun F., Fu H., Liu Q., Tie Y., Zhu J., Xing R., Sun Z., Zheng X., Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest, FEBS letters, 2008, 582, 1564-1568. Google Scholar

  • [47] Lefort K., Brooks Y., Ostano P., Cario-Andre M., Calpini V., Guinea-Viniegra J., Albinger-Hegyi A., Hoetzenecker W., Kolfschoten I., Wagner E.F., et al., A miR-34a-SIRT6 axis in the squamous cell differentiation network, The EMBO journal, 2013, 32, 2248-2263. CrossrefGoogle Scholar

  • [48] Kumar B., Yadav A., Lang J., Teknos T.N., Kumar P., Dysregulation of microRNA-34a expression in head and neck squamous cell carcinoma promotes tumor growth and tumor angiogenesis, PloS one, 2012, 7, e37601. Google Scholar

  • [49] Campayo M., Navarro A., Vinolas N., Diaz T., Tejero R., Gimferrer J.M., Molins L., Cabanas M.L., Ramirez J., Monzo M., et al., Low miR-145 and high miR-367 are associated with unfavourable prognosis in resected nonsmall cell lung cancer, The European respiratory journal, 2013, 41, 1172-1178. Google Scholar

  • [50] Avgeris M., Stravodimos K., Fragoulis E.G., Scorilas A., The loss of the tumour-suppressor miR-145 results in the shorter disease-free survival of prostate cancer patients, British journal of cancer, 2013, 108, 2573-2581. Google Scholar

  • [51] Sachdeva M., Zhu S., Wu F., Wu H., Walia V., Kumar S., Elble R., Watabe K., Mo Y.Y., p53 represses c-Myc through induction of the tumor suppressor miR-145, Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3207-3212. Google Scholar

  • [52] Speranza M.C., Frattini V., Pisati F., Kapetis D., Porrati P., Eoli M., Pellegatta S., Finocchiaro G., NEDD9, a novel target of miR-145, increases the invasiveness of glioblastoma, Oncotarget, 2012, 3, 723-734. Google Scholar

  • [53] Siemens H., Jackstadt R., Kaller M., Hermeking H., Repression of c-Kit by p53 is mediated by miR-34 and is associated with reduced chemoresistance, migration and stemness, Oncotarget, 2013, 4, 1399-1415. Google Scholar

  • [54] Zhang J., Sun Q., Zhang Z., Ge S., Han Z.G., Chen W.T., Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epithelial cancers by impairing the MDM2-p53 feedback loop, Oncogene, 2013, 32, 61-69. Google Scholar

  • [55] Yang Y.P., Chien Y., Chiou G.Y., Cherng J.Y., Wang M.L., Lo W.L., Chang Y.L., Huang P.I., Chen Y.W., Shih Y.H., et al., Inhibition of cancer stem cell-like properties and reduced chemoradioresistance of glioblastoma using microRNA145 with cationic polyurethane-short branch PEI, Biomaterials, 2012, 33, 1462-1476. CrossrefGoogle Scholar

  • [56] Lee H.K., Finniss S., Cazacu S., Bucris E., Ziv-Av A., Xiang C., Bobbitt K., Rempel S.A., Hasselbach L., Mikkelsen T., et al., Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal, Oncotarget, 2013, 4, 346-361. Google Scholar

  • [57] Yang J., Weinberg R.A., Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis, Developmental cell, 2008, 14, 818-829. CrossrefGoogle Scholar

  • [58] Thiery J.P., Epithelial-mesenchymal transitions in tumour progression, Nature reviews. Cancer, 2002, 2, 442-454. CrossrefGoogle Scholar

  • [59] Mani S.A., Guo W., Liao M.J., Eaton E.N., Ayyanan A., Zhou A.Y., Brooks M., Reinhard F., Zhang C.C., Shipitsin M., et al., The epithelial-mesenchymal transition generates cells with properties of stem cells, Cell, 2008, 133, 704-715. Google Scholar

  • [60] Polyak K., Weinberg R.A., Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits, Nature reviews. Cancer, 2009, 9, 265-273. CrossrefGoogle Scholar

  • [61] Kalluri R., Weinberg R.A., The basics of epithelial-mesenchymal transition, The Journal of clinical investigation, 2009, 119, 1420-1428. Google Scholar

  • [62] Clarke M.F., Fuller M., Stem cells and cancer: two faces of eve, Cell, 2006, 124, 1111-1115. CrossrefGoogle Scholar

  • [63] Chang C.J., Chao C.H., Xia W., Yang J.Y., Xiong Y., Li C.W., Yu W.H., Rehman S.K., Hsu J.L., Lee H.H., et al., p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs, Nature cell biology, 2011, 13, 317-323. Google Scholar

  • [64] Park S.M., Gaur A.B., Lengyel E., Peter M.E., The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2, Genes & development, 2008, 22, 894-907. Google Scholar

  • [65] Shimono Y., Zabala M., Cho R.W., Lobo N., Dalerba P., Qian D., Diehn M., Liu H., Panula S.P., Chiao E., et al., Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells, Cell, 2009, 138, 592-603. Google Scholar

  • [66] Wellner U., Schubert J., Burk U.C., Schmalhofer O., Zhu F., Sonntag A., Waldvogel B., Vannier C., Darling D., zur Hausen A., et al., The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs, Nature cell biology, 2009, 11, 1487-1495. Google Scholar

  • [67] Lim Y.Y., Wright J.A., Attema J.L., Gregory P.A., Bert A.G., Smith E., Thomas D., Lopez A.F., Drew P.A., Khew-Goodall Y., et al., Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem-cell-like state, Journal of cell science, 2013, 126, 2256-2266. Google Scholar

  • [68] Al-Hajj M., Wicha M.S., Benito-Hernandez A., Morrison S.J., Clarke M.F., Prospective identification of tumorigenic breast cancer cells, Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3983-3988. Google Scholar

  • [69] Reya T., Morrison S.J., Clarke M.F., Weissman I.L., Stem cells, cancer, and cancer stem cells, Nature, 2001, 414, 105-111. Google Scholar

  • [70] Jordan C.T., Guzman M.L., Noble M., Cancer stem cells, The New England journal of medicine, 2006, 355, 1253-1261. Google Scholar

  • [71] Raza U., Zhang J.D., Sahin O., MicroRNAs: master regulators of drug resistance, stemness, and metastasis, Journal of molecular medicine, 2014, 92, 321-336. Google Scholar

  • [72] Rolfo C., Fanale D., Hong D.S., Tsimberidou A.M., Piha-Paul S.A., Pauwels P., Van Meerbeeck J.P., Caruso S., Bazan V., Cicero G., et al., Impact of MicroRNAs in Resistance to Chemotherapy and Novel Targeted Agents in Non-Small Cell Lung Cancer, Current pharmaceutical biotechnology, 2014, Google Scholar

  • [73] Ventura A., Kirsch D.G., McLaughlin M.E., Tuveson D.A., Grimm J., Lintault L., Newman J., Reczek E.E., Weissleder R., Jacks T., Restoration of p53 function leads to tumour regression in vivo, Nature, 2007, 445, 661-665. Google Scholar

  • [74] Xue W., Zender L., Miething C., Dickins R.A., Hernando E., Krizhanovsky V., Cordon-Cardo C., Lowe S.W., Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas, Nature, 2007, 445, 656-660. Google Scholar

  • [75] Brabletz S., Brabletz T., The ZEB/miR-200 feedback loop--a motor of cellular plasticity in development and cancer?, EMBO reports, 2010, 11, 670-677. CrossrefGoogle Scholar

  • [76] Magenta A., Cencioni C., Fasanaro P., Zaccagnini G., Greco S., Sarra-Ferraris G., Antonini A., Martelli F., Capogrossi M.C., miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition, Cell death and differentiation, 2011, 18, 1628-1639. Google Scholar

  • [77] Cufi S., Vazquez-Martin A., Oliveras-Ferraros C., Quirantes R., Segura-Carretero A., Micol V., Joven J., Bosch-Barrera J., Del Barco S., Martin-Castillo B., et al., Metformin lowers the threshold for stress-induced senescence: a role for the microRNA-200 family and miR-205, Cell Cycle, 2012, 11, 1235-1246. Google Scholar

  • [78] Marson A., Levine S.S., Cole M.F., Frampton G.M., Brambrink T., Johnstone S., Guenther M.G., Johnston W.K., Wernig M., Newman J., et al., Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells, Cell, 2008, 134, 521-533. Google Scholar

  • [79] Lichner Z., Pall E., Kerekes A., Pallinger E., Maraghechi P., Bosze Z., Gocza E., The miR-290-295 cluster promotes pluripotency maintenance by regulating cell cycle phase distribution in mouse embryonic stem cells, Differentiation; research in biological diversity, 2011, 81, 11-24. Google Scholar

  • [80] Wang Y., Baskerville S., Shenoy A., Babiarz J.E., Baehner L., Blelloch R., Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation, Nature genetics, 2008, 40, 1478-1483. CrossrefGoogle Scholar

  • [81] Abbas T., Dutta A., p21 in cancer: intricate networks and multiple activities, Nature reviews. Cancer, 2009, 9, 400-414. CrossrefGoogle Scholar

  • [82] Aladjem M.I., Spike B.T., Rodewald L.W., Hope T.J., Klemm M., Jaenisch R., Wahl G.M., ES cells do not activate p53-dependent stress responses and undergo p53-independent apoptosis in response to DNA damage, Current biology : CB, 1998, 8, 145-155. Google Scholar

  • [83] Solozobova V., Rolletschek A., Blattner C., Nuclear accumulation and activation of p53 in embryonic stem cells after DNA damage, BMC cell biology, 2009, 10, 46. Google Scholar

  • [84] Dolezalova D., Mraz M., Barta T., Plevova K., Vinarsky V., Holubcova Z., Jaros J., Dvorak P., Pospisilova S., Hampl A., MicroRNAs regulate p21(Waf1/Cip1) protein expression and the DNA damage response in human embryonic stem cells, Stem Cells, 2012, 30, 1362-1372. CrossrefGoogle Scholar

  • [85] Wang Y., Blelloch R., Cell cycle regulation by MicroRNAs in embryonic stem cells, Cancer research, 2009, 69, 4093-4096. CrossrefGoogle Scholar

  • [86] Li Y., Pei J., Xia H., Ke H., Wang H., Tao W., Lats2, a putative tumor suppressor, inhibits G1/S transition, Oncogene, 2003, 22, 4398-4405. CrossrefGoogle Scholar

  • [87] Hong Y., Stambrook P.J., Restoration of an absent G1 arrest and protection from apoptosis in embryonic stem cells after ionizing radiation, Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14443-14448. Google Scholar

  • [88] Solozobova V., Blattner C., Regulation of p53 in embryonic stem cells, Experimental cell research, 2010, 316, 2434-2446. Google Scholar

  • [89] Zheng G.X., Ravi A., Calabrese J.M., Medeiros L.A., Kirak O., Dennis L.M., Jaenisch R., Burge C.B., Sharp P.A., A latent pro-survival function for the mir-290-295 cluster in mouse embryonic stem cells, PLoS genetics, 2011, 7, e1002054. Google Scholar

  • [90] Neveu P., Kye M.J., Qi S., Buchholz D.E., Clegg D.O., Sahin M., Park I.H., Kim K.S., Daley G.Q., Kornblum H.I., et al., MicroRNA profiling reveals two distinct p53-related human pluripotent stem cell states, Cell stem cell, 2010, 7, 671-681. Google Scholar

  • [91] Sengupta S., Nie J., Wagner R.J., Yang C., Stewart R., Thomson J.A., MicroRNA 92b controls the G1/S checkpoint gene p57 in human embryonic stem cells, Stem Cells, 2009, 27, 1524-1528. CrossrefGoogle Scholar

  • [92] Bar M., Wyman S.K., Fritz B.R., Qi J., Garg K.S., Parkin R.K., Kroh E.M., Bendoraite A., Mitchell P.S., Nelson A.M., et al., MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNA libraries, Stem Cells, 2008, 26, 2496-2505. CrossrefGoogle Scholar

  • [93] Koledova Z., Kramer A., Kafkova L.R., Divoky V., Cell-cycle regulation in embryonic stem cells: centrosomal decisions on self-renewal, Stem cells and development, 2010, 19, 1663-1678. Google Scholar

  • [94] Garg N., Po A., Miele E., Campese A.F., Begalli F., Silvano M., Infante P., Capalbo C., De Smaele E., Canettieri G., et al., microRNA-17-92 cluster is a direct Nanog target and controls neural stem cell through Trp53inp1, The EMBO journal, 2013, CrossrefGoogle Scholar

  • [95] Bian S., Hong J., Li Q., Schebelle L., Pollock A., Knauss J.L., Garg V., Sun T., MicroRNA cluster miR-17-92 regulates neural stem cell expansion and transition to intermediate progenitors in the developing mouse neocortex, Cell reports, 2013, 3, 1398-1406. Google Scholar

  • [96] Liu X.S., Chopp M., Wang X.L., Zhang L., Hozeska-Solgot A., Tang T., Kassis H., Zhang R.L., Chen C., Xu J., et al., MicroRNA-17-92 cluster mediates the proliferation and survival of neural progenitor cells after stroke, The Journal of biological chemistry, 2013, 288, 12478-12488. Google Scholar

  • [97] Melino G., De Laurenzi V., Vousden K.H., p73: Friend or foe in tumorigenesis, Nature reviews. Cancer, 2002, 2, 605-615. CrossrefGoogle Scholar

  • [98] Yang A., Kaghad M., Caput D., McKeon F., On the shoulders of giants: p63, p73 and the rise of p53, Trends in genetics : TIG, 2002, 18, 90-95. Google Scholar

  • [99] Knouf E.C., Garg K., Arroyo J.D., Correa Y., Sarkar D., Parkin R.K., Wurz K., O’Briant K.C., Godwin A.K., Urban N.D., et al., An integrative genomic approach identifies p73 and p63 as activators of miR-200 microRNA family transcription, Nucleic acids research, 2012, 40, 499-510. Google Scholar

  • [100] DeCastro A.J., Dunphy K.A., Hutchinson J., Balboni A.L., Cherukuri P., Jerry D.J., DiRenzo J., MiR203 mediates subversion of stem cell properties during mammary epithelial differentiation via repression of DeltaNP63alpha and promotes mesenchymal-to-epithelial transition, Cell death & disease, 2013, 4, e514. Google Scholar

  • [101] Nekulova M., Holcakova J., Coates P., Vojtesek B., The role of p63 in cancer, stem cells and cancer stem cells, Cellular & molecular biology letters, 2011, 16, 296-327. Google Scholar

  • [102] Boominathan L., The guardians of the genome (p53, TA-p73, and TA-p63) are regulators of tumor suppressor miRNAs network, Cancer metastasis reviews, 2010, 29, 613-639. Google Scholar

  • [103] Boominathan L., The tumor suppressors p53, p63, and p73 are regulators of microRNA processing complex, PloS one, 2010, 5, e10615. Google Scholar

  • [104] Selbach M., Schwanhausser B., Thierfelder N., Fang Z., Khanin R., Rajewsky N., Widespread changes in protein synthesis induced by microRNAs, Nature, 2008, 455, 58-63. Google Scholar

  • [105] Baek D., Villen J., Shin C., Camargo F.D., Gygi S.P., Bartel D.P., The impact of microRNAs on protein output, Nature, 2008, 455, 64-71. Google Scholar

  • [106] Guttman M., Amit I., Garber M., French C., Lin M.F., Feldser D., Huarte M., Zuk O., Carey B.W., Cassady J.P., et al., Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals, Nature, 2009, 458, 223-227. Google Scholar

  • [107] Khalil A.M., Guttman M., Huarte M., Garber M., Raj A., Rivea Morales D., Thomas K., Presser A., Bernstein B.E., van Oudenaarden A., et al., Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression, Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11667-11672. Google Scholar

  • [108] Guttman M., Donaghey J., Carey B.W., Garber M., Grenier J.K., Munson G., Young G., Lucas A.B., Ach R., Bruhn L., et al., lincRNAs act in the circuitry controlling pluripotency and differentiation, Nature, 2011, 477, 295-300. Google Scholar

  • [109] Alves C.P., Fonseca A.S., Muys B.R., de Barros E.L.B.R., Burger M.C., de Souza J.E., Valente V., Zago M.A., Silva W.A., Jr., The lincRNA Hotair is required for epithelial-to-mesenchymal transition and stemness maintenance of cancer cells lines, Stem Cells, 2013, Google Scholar

  • [110] Gupta R.A., Shah N., Wang K.C., Kim J., Horlings H.M., Wong D.J., Tsai M.C., Hung T., Argani P., Rinn J.L., et al., Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis, Nature, 2010, 464, 1071-1076. Google Scholar

  • [111] Wang Y., Xu Z., Jiang J., Xu C., Kang J., Xiao L., Wu M., Xiong J., Guo X., Liu H., Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal, Developmental cell, 2013, 25, 69-80. Google Scholar

  • [112] Zhou X., Gao Q., Wang J., Zhang X., Liu K., Duan Z., Linc-RNA-RoR acts as a “sponge” against mediation of the differentiation of endometrial cancer stem cells by microRNA-145, Gynecologic oncology, 2014, 133, 333-339. Google Scholar

  • [113] Cesana M., Cacchiarelli D., Legnini I., Santini T., Sthandier O., Chinappi M., Tramontano A., Bozzoni I., A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA, Cell, 2011, 147, 358-369. Google Scholar

  • [114] Deregibus M.C., Tetta C., Camussi G., The dynamic stem cell microenvironment is orchestrated by microvesicle-mediated transfer of genetic information, Histology and histopathology, 2010, 25, 397-404. Google Scholar

  • [115] Yuan A., Farber E.L., Rapoport A.L., Tejada D., Deniskin R., Akhmedov N.B., Farber D.B., Transfer of microRNAs by embryonic stem cell microvesicles, PloS one, 2009, 4, e4722. Google Scholar

  • [116] Chen T.S., Lai R.C., Lee M.M., Choo A.B., Lee C.N., Lim S.K., Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs, Nucleic acids research, 2010, 38, 215-224. Google Scholar

  • [117] Ratajczak J., Wysoczynski M., Hayek F., Janowska-Wieczorek A., Ratajczak M.Z., Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication, Leukemia, 2006, 20, 1487-1495. CrossrefGoogle Scholar

  • [118] Mathivanan S., Ji H., Simpson R.J., Exosomes: extracellular organelles important in intercellular communication, Journal of proteomics, 2010, 73, 1907-1920. Google Scholar

  • [119] Zoller M., Tetraspanins: push and pull in suppressing and promoting metastasis, Nature reviews. Cancer, 2009, 9, 40-55. CrossrefGoogle Scholar

  • [120] Raposo G., Stoorvogel W., Extracellular vesicles: exosomes, microvesicles, and friends, The Journal of cell biology, 2013, 200, 373-383. Google Scholar

  • [121] Ratajczak J., Miekus K., Kucia M., Zhang J., Reca R., Dvorak P., Ratajczak M.Z., Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery, Leukemia, 2006, 20, 847-856. CrossrefGoogle Scholar

  • [122] Katsman D., Stackpole E.J., Domin D.R., Farber D.B., Embryonic stem cell-derived microvesicles induce gene expression changes in Muller cells of the retina, PloS one, 2012, 7, e50417. Google Scholar

  • [123] Judson R.L., Babiarz J.E., Venere M., Blelloch R., Embryonic stem cell-specific microRNAs promote induced pluripotency, Nature biotechnology, 2009, 27, 459-461. Google Scholar

  • [124] Cantaluppi V., Gatti S., Medica D., Figliolini F., Bruno S., Deregibus M.C., Sordi A., Biancone L., Tetta C., Camussi G., Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNAdependent reprogramming of resident renal cells, Kidney international, 2012, 82, 412-427. CrossrefGoogle Scholar

  • [125] Collino F., Deregibus M.C., Bruno S., Sterpone L., Aghemo G., Viltono L., Tetta C., Camussi G., Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs, PloS one, 2010, 5, e11803. Google Scholar

About the article

Received: 2014-01-15

Accepted: 2014-06-24

Published Online: 2014-12-17


Citation Information: microRNA Diagnostics and Therapeutics, ISSN (Online) 2084-6843, DOI: https://doi.org/10.2478/micrnat-2014-0004.

Export Citation

© 2014 Andrew J. DeCastro, James DiRenzo. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in