Jump to ContentJump to Main Navigation
Show Summary Details
More options …

microRNA Diagnostics and Therapeutics

Ed. by Sempere, Lorenzo

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2084-6843
See all formats and pricing
More options …

MicroRNAs are central to osteogenesis: a review with a focus on cardiovascular calcification

Sean Coffey
  • OxVALVE Study, Room B15, Level 0, Cardiac Investigations Annexe, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, United Kingdom
  • Department of Medicine, University of Otago, Dunedin, New Zealand, and Research Fellow, Department of Cardiology, Oxford University Hospitals, Oxford, United Kingdom
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gregory T Jones
Published Online: 2015-03-24 | DOI: https://doi.org/10.2478/micrnat-2014-0005

Abstract

Cardiovascular calcification, manifested by coronary artery calcification and aortic valve stenosis, is a widespread condition that is becoming more common with the aging of the general population. No disease-modifying therapies currently exist for any forms of cardiovascular calcification. A number of similarities exist between pathological calcification in cardiovascular tissue and physiological calcification in bone, termed osteogenesis. MicroRNAs are small noncoding RNAs that have been shown to have multiple effects throughout the cardiovascular system. In this review, we discuss the pre-clinical evidence supporting a role for microRNAs in osteogenesis, with a focus on cardiovascular calcification. The microRNAs with most evidence implicating them in the disease process are the miR-17~92 cluster, miR-23a/27a/24-2 family, miR-26a, miR-29b, the miR-30 family, miR-31, miR-125b, miR-133a, miR-143/145, miR-155, and miR-221/222. We also highlight the limitations of current evidence in this field, such as the lack of studies using high-throughput technologies.

Keywords : MicroRNA (miR, miRNA); vascular calcification; aortic valve stenosis; coronary artery calcification; peripheral vascular disease

References

  • [1] E.M. Small, E.N. Olson. Pervasive roles of microRNAs in cardiovascular biology. Nature. 2011; 469: 336–42. Google Scholar

  • [2] S. Coffey, B. Cox, M.J.A. Williams. Lack of progress in valvular heart disease in the pre-transcatheter aortic valve replacement era: increasing deaths and minimal change in mortality rate over the past three decades. Am. Heart J. 2014; 167: 562–567. e2. Google Scholar

  • [3] M.Y. Henein, A. Owen. Statins moderate coronary stenoses but not coronary calcification: results from meta-analyses. Int. J. Cardiol. 2011; 153: 31–5. Google Scholar

  • [4] A.B. Rossebø, T.R. Pedersen, K. Boman, P. Brudi, J.B. Chambers, K. Egstrup, et al. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N. Engl. J. Med. 2008; 359: 1343–56. Google Scholar

  • [5] E.R. Mohler, F. Gannon, C. Reynolds, R. Zimmerman, M.G. Keane, F.S. Kaplan. Bone formation and inflammation in cardiac valves. Circulation. 2001; 103: 1522–1528. Google Scholar

  • [6] J. Bauersachs, T. Thum. Biogenesis and Regulation of Cardiovascular MicroRNAs. Circ. Res. 2011; 109: 334–47. CrossrefGoogle Scholar

  • [7] Y. Lee, M. Kim, J. Han, K.-H. Yeom, S. Lee, S.H. Baek, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004; 23: 4051–60. CrossrefGoogle Scholar

  • [8] A.M. Denli, B.B.J. Tops, R.H.A. Plasterk, R.F. Ketting, G.J. Hannon. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004; 432: 231–5. Google Scholar

  • [9] R.I. Gregory, K.-P. Yan, G. Amuthan, T. Chendrimada, B. Doratotaj, N. Cooch, et al. The Microprocessor complex mediates the genesis of microRNAs. Nature. 2004; 432: 235–40. Google Scholar

  • [10] R. Yi, Y. Qin, I.G. Macara, B.R. Cullen. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003; 17: 3011–6. CrossrefGoogle Scholar

  • [11] B.S. Cobb, T.B. Nesterova, E. Thompson, A. Hertweck, E. O’Connor, J. Godwin, et al. T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J. Exp. Med. 2005; 201: 1367–73. Google Scholar

  • [12] R.C. Friedman, K.K.-H. Farh, C.B. Burge, D.P. Bartel. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009; 19: 92–105. Google Scholar

  • [13] A. Helwak, G. Kudla, T. Dudnakova, D. Tollervey. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell. 2013; 153: 654–65. Google Scholar

  • [14] E. van Rooij, A.L. Purcell, A.A. Levin. Developing MicroRNA Therapeutics. Circ. Res. 2012; 110: 496–507. CrossrefGoogle Scholar

  • [15] R.E. Lanford, E.S. Hildebrandt-Eriksen, A. Petri, R. Persson, M. Lindow, M.E. Munk, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 2010; 327: 198–201. Google Scholar

  • [16] H.L.A. Janssen, H.W. Reesink, E.J. Lawitz, S. Zeuzem, M. Rodriguez-Torres, K. Patel, et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 2013; 368: 1685–94. Google Scholar

  • [17] C. Goettsch, J.D. Hutcheson, E. Aikawa. MicroRNA in Cardiovascular Calcification: Focus on Targets and Extracellular Vesicle Delivery Mechanisms. Circ. Res. 2013; 112: 1073–1084. CrossrefGoogle Scholar

  • [18] M. Scheideler, C. Elabd, L.-E. Zaragosi, C. Chiellini, H. Hackl, F. Sanchez-Cabo, et al. Comparative transcriptomics of human multipotent stem cells during adipogenesis and osteoblastogenesis. BMC Genomics. 2008; 9: 340. CrossrefGoogle Scholar

  • [19] T. Gaur, S. Hussain, R. Mudhasani, I. Parulkar, J.L. Colby, D. Frederick, et al. Dicer inactivation in osteoprogenitor cells compromises fetal survival and bone formation, while excision in differentiated osteoblasts increases bone mass in the adult mouse. Dev. Biol. 2010; 340: 10–21. Google Scholar

  • [20] Y. Zhang, R.-L. Xie, C.M. Croce, J.L. Stein, J.B. Lian, A.J. van Wijnen, et al. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 9863–8. CrossrefGoogle Scholar

  • [21] Y. Zhang, R.-L. Xie, J. Gordon, K. LeBlanc, J.L. Stein, J.B. Lian, et al. Control of mesenchymal lineage progression by microRNAs targeting skeletal gene regulators Trps1 and Runx2. J. Biol. Chem. 2012; 287: 21926–35. Google Scholar

  • [22] M.Q. Hassan, J. a R. Gordon, M.M. Beloti, C.M. Croce, A.J. van Wijnen, J.L. Stein, et al. A network connecting Runx2, SATB2, and the miR-23a~27a~24-2 cluster regulates the osteoblast differentiation program. Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 19879–84. CrossrefGoogle Scholar

  • [23] J. Dong, X. Cui, Z. Jiang, J. Sun. MicroRNA-23a modulates tumor necrosis factor-alpha-induced osteoblasts apoptosis by directly targeting Fas. J. Cell. Biochem. 2013; 114: 2738–45. Google Scholar

  • [24] X.-B. Liao, Z.-Y. Zhang, K. Yuan, Y. Liu, X. Feng, R.-R. Cui, et al. MiR-133a modulates osteogenic differentiation of vascular smooth muscle cells. Endocrinology. 2013; 154: 3344–52. Google Scholar

  • [25] V. Pérez-Andreu, R. Teruel, J. Corral, V. Roldán, N. García- Barberá, S. Salloum-Asfar, et al. miR-133a regulates vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1), a key protein in the vitamin K cycle. Mol. Med. 2012; 18: 1466–72. Google Scholar

  • [26] Z. Li, M.Q. Hassan, S. Volinia, A.J. van Wijnen, J.L. Stein, C.M. Croce, et al. A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc. Natl. Acad. Sci. U. S. A. 2008; 105: 13906–11. CrossrefGoogle Scholar

  • [27] J. Huang, L. Zhao, L. Xing, D. Chen. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells. 2010; 28: 357–64. Google Scholar

  • [28] R.-R. Cui, S.-J. Li, L.-J. Liu, L. Yi, Q.-H. Liang, X. Zhu, et al. MicroRNA-204 regulates vascular smooth muscle cell calcification in vitro and in vivo. Cardiovasc. Res. 2012; 96: 320–9. Google Scholar

  • [29] E.-J. Kim, I.-H. Kang, J.W. Lee, W.-G. Jang, J.-T. Koh. MiR-433 mediates ERRγ-suppressed osteoblast differentiation via direct targeting to Runx2 mRNA in C3H10T1/2 cells. Life Sci. 2013; 92: 562–8. Google Scholar

  • [30] M. Tomé, P. López-Romero, C. Albo, J.C. Sepúlveda, B. Fernández-Gutiérrez, a Dopazo, et al. miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death Differ. 2011; 18: 985–95. Google Scholar

  • [31] J. Zhang, Q. Tu, L.F. Bonewald, X. He, G. Stein, J. Lian, et al. Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J. Bone Miner. Res. 2011; 26: 1953–63. Google Scholar

  • [32] R. Bhushan, J. Grünhagen, J. Becker, P.N. Robinson, C.-E. Ott, P. Knaus. miR-181a promotes osteoblastic differentiation through repression of TGF-β signaling molecules. Int. J. Biochem. Cell Biol. 2013; 45: 696–705. Google Scholar

  • [33] Y. Mizuno, Y. Tokuzawa, Y. Ninomiya, K. Yagi, Y. Yatsuka- Kanesaki, T. Suda, et al. miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b. FEBS Lett. 2009; 583: 2263–8. Google Scholar

  • [34] T. Itoh, M. Ando, Y. Tsukamasa, Y. Akao. Expression of BMP-2 and Ets1 in BMP-2-stimulated mouse pre-osteoblast differentiation is regulated by microRNA-370. FEBS Lett. 2012; 586: 1693–701. Google Scholar

  • [35] T. Itoh, S. Takeda, Y. Akao. MicroRNA-208 modulates BMP-2-stimulated mouse preosteoblast differentiation by directly targeting V-ets erythroblastosis virus E26 oncogene homolog 1. J. Biol. Chem. 2010; 285: 27745–52. Google Scholar

  • [36] Y. Zeng, X. Qu, H. Li, S. Huang, S. Wang, Q. Xu, et al. MicroRNA-100 regulates osteogenic differentiation of human adipose-derived mesenchymal stem cells by targeting BMPR2. FEBS Lett. 2012; 586: 2375–81. Google Scholar

  • [37] Y. Du, C. Gao, Z. Liu, L. Wang, B. Liu, F. He, et al. Upregulation of a disintegrin and metalloproteinase with thrombospondin motifs-7 by miR-29 repression mediates vascular smooth muscle calcification. Arterioscler. Thromb. Vasc. Biol. 2012; 32: 2580–8. CrossrefGoogle Scholar

  • [38] T. Itoh, Y. Nozawa, Y. Akao. MicroRNA-141 and -200a are involved in bone morphogenetic protein-2-induced mouse pre-osteoblast differentiation by targeting distal-less homeobox 5. J. Biol. Chem. 2009; 284: 19272–9. Google Scholar

  • [39] B. Yanagawa, F. Lovren, Y. Pan, V. Garg, A. Quan, G. Tang, et al. miRNA-141 is a novel regulator of BMP-2-mediated calcification in aortic stenosis. J. Thorac. Cardiovasc. Surg. 2012; 144: 256–62. Google Scholar

  • [40] J. Gao, T. Yang, J. Han, K. Yan, X. Qiu, Y. Zhou, et al. MicroRNA expression during osteogenic differentiation of human multipotent mesenchymal stromal cells from bone marrow. J. Cell. Biochem. 2011; 112: 1844–56. CrossrefGoogle Scholar

  • [41] S.R. Baglìo, V. Devescovi, D. Granchi, N. Baldini. MicroRNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation reveals Osterix regulation by miR-31. Gene. 2013; 527: 321–31. Google Scholar

  • [42] J. Zhang, W. Fu, M. He, H. Wang, W. Wang, S. Yu, et al. MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix. Mol. Biol. Cell. 2011; 22: 3955–61. Google Scholar

  • [43] K. Shi, J. Lu, Y. Zhao, L. Wang, J. Li, B. Qi, et al. MicroRNA-214 suppresses osteogenic differentiation of C2C12 myoblast cells by targeting Osterix. Bone. 2013; 55: 487–94. Google Scholar

  • [44] L. Yang, P. Cheng, C. Chen, H.-B. He, G.-Q. Xie, H.-D. Zhou, et al. miR-93/Sp7 function loop mediates osteoblast mineralization. J. Bone Miner. Res. 2012; 27: 1598–606. CrossrefGoogle Scholar

  • [45] T.S. Lisse, R.F. Chun, S. Rieger, J.S. Adams, M. Hewison. Vitamin D activation of functionally distinct regulatory miRNAs in primary human osteoblasts. J. Bone Miner. Res. 2013; 28: 1478–88. CrossrefGoogle Scholar

  • [46] L. Fang, S. Kahai, W. Yang, C. He, A. Seth, C. Peng, et al. Transforming growth factor-beta inhibits nephronectin-induced osteoblast differentiation. FEBS Lett. 2010; 584: 2877–82. Google Scholar

  • [47] M. Tsukasaki, A. Yamada, K. Yoshimura, A. Miyazono, M. Yamamoto, M. Takami, et al. Nephronectin expression is regulated by SMAD signaling in osteoblast-like MC3T3-E1 cells. Biochem. Biophys. Res. Commun. 2012; 425: 390–2. Google Scholar

  • [48] S. Kahai, S.-C. Lee, D.Y. Lee, J. Yang, M. Li, C.-H. Wang, et al. MicroRNA miR-378 regulates nephronectin expression modulating osteoblast differentiation by targeting GalNT-7. PLoS One. 2009; 4: e7535. Google Scholar

  • [49] T. Gui, G. Zhou, Y. Sun, A. Shimokado, S. Itoh, K. Oikawa, et al. MicroRNAs that target Ca(2+) transporters are involved in vascular smooth muscle cell calcification. Lab. Invest. 2012; 92: 1250–9. CrossrefGoogle Scholar

  • [50] H. Li, H. Xie, W. Liu, R. Hu, B. Huang, Y. Tan, et al. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J. Clin. Invest. 2009; 119: 3666–77. CrossrefGoogle Scholar

  • [51] R. Hu, W. Liu, H. Li, L. Yang, C. Chen, Z.-Y. Xia, et al. A Runx2/ miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation. J. Biol. Chem. 2011; 286: 12328–39. Google Scholar

  • [52] S. Huang, S. Wang, C. Bian, Z. Yang, H. Zhou, Y. Zeng, et al. Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression. Stem Cells Dev. 2012; 21: 2531–40. CrossrefGoogle Scholar

  • [53] M. Zhou, J. Ma, S. Chen, X. Chen, X. Yu. MicroRNA-17-92 cluster regulates osteoblast proliferation and differentiation. Endocrine. 2014; 45: 302–10. CrossrefGoogle Scholar

  • [54] H. Li, T. Li, S. Wang, J. Wei, J. Fan, J. Li, et al. miR-17-5p and miR-106a are involved in the balance between osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells. Stem Cell Res. 2013; 10: 313–24. CrossrefGoogle Scholar

  • [55] J. Zhang, W. Fu, M. He, W. Xie, Q. Lv, G. Wan, et al. MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling. RNA Biol. 2011; 8: 829–38. CrossrefGoogle Scholar

  • [56] D.M. Tiago, C.L. Marques, V.P. Roberto, M.L. Cancela, V. Laizé. Mir-20a regulates in vitro mineralization and BMP signaling pathway by targeting BMP-2 transcript in fish. Arch. Biochem. Biophys. 2014; 543: 23–30. Google Scholar

  • [57] E. Luzi, F. Marini, S.C. Sala, I. Tognarini, G. Galli, M.L. Brandi. Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J. Bone Miner. Res. 2008; 23: 287–95. Google Scholar

  • [58] E. Luzi, F. Marini, I. Tognarini, G. Galli, A. Falchetti, M.L. Brandi. The regulatory network menin-microRNA 26a as a possible target for RNA-based therapy of bone diseases. Nucleic Acid Ther. 2012; 22: 103–8. Google Scholar

  • [59] V. Nigam, H.H. Sievers, B.C. Jensen, H.A. Sier, P.C. Simpson, D. Srivastava, et al. Altered microRNAs in bicuspid aortic valve: a comparison between stenotic and insufficient valves. J. Heart Valve Dis. 2010; 19: 459–65. Google Scholar

  • [60] Z. Li, M.Q. Hassan, M. Jafferji, R.I. Aqeilan, R. Garzon, C.M. Croce, et al. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J. Biol. Chem. 2009; 284: 15676–84. Google Scholar

  • [61] K. Kapinas, C.B. Kessler, A.M. Delany. miR-29 suppression of osteonectin in osteoblasts: regulation during differentiation and by canonical Wnt signaling. J. Cell. Biochem. 2009; 108: 216–24. CrossrefGoogle Scholar

  • [62] K. Kapinas, C. Kessler, T. Ricks, G. Gronowicz, A.M. Delany. miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. J. Biol. Chem. 2010; 285: 25221–31. Google Scholar

  • [63] M.D. Paraskevopoulou, G. Georgakilas, N. Kostoulas, I.S. Vlachos, T. Vergoulis, M. Reczko, et al. DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res. 2013; 41: W169–73. Google Scholar

  • [64] T. Eguchi, K. Watanabe, E.S. Hara, M. Ono, T. Kuboki, S.K. Calderwood. OstemiR: a novel panel of microRNA biomarkers in osteoblastic and osteocytic differentiation from mesencymal stem cells. PLoS One. 2013; 8: e58796. Google Scholar

  • [65] M. Zhang, X. Liu, X. Zhang, Z. Song, L. Han, Y. He, et al. MicroRNA-30b is a multifunctional regulator of aortic valve interstitial cells. J. Thorac. Cardiovasc. Surg. 2013; 1–8. Google Scholar

  • [66] J. Wang, X. Guan, F. Guo, J. Zhou, a Chang, B. Sun, et al. miR-30e reciprocally regulates the differentiation of adipocytes and osteoblasts by directly targeting low-density lipoprotein receptor-related protein 6. Cell Death Dis. 2013; 4: e845. Google Scholar

  • [67] J.A.F. Balderman, H.-Y. Lee, C.E. Mahoney, D.E. Handy, K. White, S. Annis, et al. Bone Morphogenetic Protein-2 Decreases MicroRNA-30b and MicroRNA-30c to Promote Vascular Smooth Muscle Cell Calcification. J. Am. Heart Assoc. 2012; 1: e003905. CrossrefGoogle Scholar

  • [68] C. Goettsch, M. Rauner, N. Pacyna, U. Hempel, S.R. Bornstein, L.C. Hofbauer. miR-125b regulates calcification of vascular smooth muscle cells. Am. J. Pathol. 2011; 179: 1594–600. Google Scholar

  • [69] P. Wen, H. Cao, L. Fang, H. Ye, Y. Zhou, L. Jiang, et al. miR-125b/ Ets1 axis regulates transdifferentiation and calcification of vascular smooth muscle cells in a high-phosphate environment. Exp. Cell Res. 2014; 322: 302–12. Google Scholar

  • [70] Y. Mizuno, K. Yagi, Y. Tokuzawa, Y. Kanesaki-Yatsuka, T. Suda, T. Katagiri, et al. miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation. Biochem. Biophys. Res. Commun. 2008; 368: 267–72. Google Scholar

  • [71] A.Y. Rangrez, E. M’Baya-Moutoula, V. Metzinger-Le Meuth, L. Hénaut, M.S.E.I. Djelouat, J. Benchitrit, et al. Inorganic phosphate accelerates the migration of vascular smooth muscle cells: evidence for the involvement of miR-223. PLoS One. 2012; 7: e47807. Google Scholar

  • [72] F. Taïbi, V. Metzinger-Le Meuth, E. M’Baya-Moutoula, M.S.E.I. Djelouat, L. Louvet, J.-M. Bugnicourt, et al. Possible involvement of microRNAs in vascular damage in experimental chronic kidney disease. Biochim. Biophys. Acta - Mol. Basis Dis. 2014; 1842: 88–98. Google Scholar

  • [73] J. Jia, Q. Tian, S. Ling, Y. Liu, S. Yang, Z. Shao. miR-145 suppresses osteogenic differentiation by targeting Sp7. FEBS Lett. 2013; 587: 3027–31. Google Scholar

  • [74] N.X. Chen, K. Kiattisunthorn, K.D. O’Neill, X. Chen, R.N. Moorthi, V.H. Gattone, et al. Decreased microRNA is involved in the vascular remodeling abnormalities in chronic kidney disease (CKD). PLoS One. 2013; 8: e64558. Google Scholar

  • [75] T. Wu, M. Xie, X. Wang, X. Jiang, J. Li, H. Huang. miR-155 modulates TNF-α-inhibited osteogenic differentiation by targeting SOCS1 expression. Bone. 2012; 51: 498–505. Google Scholar

  • [76] N. Nohata, T. Hanazawa, H. Enokida, N. Seki. microRNA-1/133a and microRNA-206/133b clusters: dysregulation and functional roles in human cancers. Oncotarget. 2012; 3: 9–21. Google Scholar

  • [77] H. Inose, H. Ochi, A. Kimura, K. Fujita, R. Xu, S. Sato, et al. A microRNA regulatory mechanism of osteoblast differentiation. Proc. Natl. Acad. Sci. U. S. A. 2009; 106: 20794–9. CrossrefGoogle Scholar

  • [78] B. Bakhshandeh, M. Hafizi, N. Ghaemi, M. Soleimani. Down-regulation of miRNA-221 triggers osteogenic differentiation in human stem cells. Biotechnol. Lett. 2012; 34: 1579–87. Google Scholar

  • [79] X. Liu, Y. Cheng, J. Yang, L. Xu, C. Zhang. Cell-specific effects of miR-221/222 in vessels: molecular mechanism and therapeutic application. J. Mol. Cell. Cardiol. 2012; 52: 245–55. Google Scholar

  • [80] N.C.W. Mackenzie, K.A. Staines, D. Zhu, P. Genever, V.E. Macrae. miRNA-221 and miRNA-222 synergistically function to promote vascular calcification. Cell Biochem. Funct. 2014; 32: 209–16. Google Scholar

  • [81] T. Eskildsen, H. Taipaleenmäki, J. Stenvang, B.M. Abdallah, N. Ditzel, A.Y. Nossent, et al. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 6139–44. Google Scholar

  • [82] Y.J. Kim, S.W. Bae, S.S. Yu, Y.C. Bae, J.S. Jung. miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. J. Bone Miner. Res. 2009; 24: 816–25. Google Scholar

  • [83] T. Wang, Z. Xu. miR-27 promotes osteoblast differentiation by modulating Wnt signaling. Biochem. Biophys. Res. Commun. 2010; 402: 186–9. Google Scholar

  • [84] A.M. Schaap-Oziemlak, R.A. Raymakers, S.M. Bergevoet, C. Gilissen, B.J.H. Jansen, G.J. Adema, et al. MicroRNA hsa-miR-135b regulates mineralization in osteogenic differentiation of human unrestricted somatic stem cells. Stem Cells Dev. 2010; 19: 877–85. Google Scholar

  • [85] B. Bakhshandeh, M. Soleimani, M. Hafizi, S.H. Paylakhi, N. Ghaemi. MicroRNA signature associated with osteogenic lineage commitment. Mol. Biol. Rep. 2012; 39: 7569–81. CrossrefGoogle Scholar

  • [86] H.-I. Trompeter, J. Dreesen, E. Hermann, K.M. Iwaniuk, M. Hafner, N. Renwick, et al. MicroRNAs miR-26a, miR-26b, and miR-29b accelerate osteogenic differentiation of unrestricted somatic stem cells from human cord blood. BMC Genomics. 2013; 14: 111. CrossrefGoogle Scholar

  • [87] F. Yu, Y. Cui, X. Zhou, X. Zhang, J. Han. Osteogenic differentiation of human ligament fibroblasts induced by conditioned medium of osteoclast-like cells. Biosci. Trends. 2011; 5: 46–51. CrossrefGoogle Scholar

  • [88] J.-H. Li, S. Liu, H. Zhou, L.-H. Qu, J.-H. Yang. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014; 42: D92–7. Google Scholar

  • [89] B.P. Lewis, C.B. Burge, D.P. Bartel. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005; 120: 15–20. CrossrefGoogle Scholar

  • [90] A. Zampetaki, P. Willeit, I. Drozdov, S. Kiechl, M. Mayr. Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovasc. Res. 2012; 93: 555–62. CrossrefGoogle Scholar

  • [91] W. Poller, R. Hajjar, H.-P. Schultheiss, H. Fechner. Cardiactargeted delivery of regulatory RNA molecules and genes for the treatment of heart failure. Cardiovasc. Res. 2010; 86: 353–64. CrossrefGoogle Scholar

About the article

Received: 2014-05-04

Accepted: 2014-10-30

Published Online: 2015-03-24


Citation Information: microRNA Diagnostics and Therapeutics, ISSN (Online) 2084-6843, DOI: https://doi.org/10.2478/micrnat-2014-0005.

Export Citation

© 2014 Sean Coffey, Gregory T Jones. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in