Jump to ContentJump to Main Navigation
Show Summary Details
More options …

microRNA Diagnostics and Therapeutics

Ed. by Sempere, Lorenzo

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2084-6843
See all formats and pricing
More options …

microRNA-based diagnostic and therapeutic opportunities in lung cancer

Jianfei Zhao
  • Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yan Cai
  • Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xi Liu
  • Corresponding author
  • Department of Thoracic and Head&Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-04-29 | DOI: https://doi.org/10.2478/micrnat-2014-0006

Abstract

microRNAs (miRNAs) are a class of non-coding RNA which suppress target gene expression. miRNAs are involved in most physiological and pathological process, including carcinogenesis. miRNA expression profiles help to improve lung cancer diagnosis, classification and prognostic information. Tumor suppressive and oncogenic miRNAs have been discovered and their functions have been investigated. Emphasis is placed on the development of miRNA-based methods for lung cancer diagnosis and therapy and future directions are proposed.

Keywords : miRNA; lung cancer; diagnosis; prognostic information; therapy

References

  • [1] Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin 2012;62:10-29. Google Scholar

  • [2] Shopland DR. Tobacco use and its contribution to early cancer mortality with a special emphasis on cigarette smoking. Environ Health Perspect 1995;103 Suppl 8:131-42. CrossrefGoogle Scholar

  • [3] Travis WD. Pathology of lung cancer. Clin Chest Med 2002;23:65-81, viii. CrossrefGoogle Scholar

  • [4] Schiller JH. Current standards of care in small-cell and non-small-cell lung cancer. Oncology 2001;61 Suppl 1:3-13. CrossrefGoogle Scholar

  • [5] Witt BL, Wallander ML, Layfield LJ, Hirschowitz S. Respiratory cytology in the era of molecular diagnostics: a review. Diagn Cytopathol 2012;40:556-63. CrossrefGoogle Scholar

  • [6] Rivera MP, Mehta AC. Initial diagnosis of lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition). Chest 2007;132:131S-48S. CrossrefGoogle Scholar

  • [7] Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, et al. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 2011;6:244-85. CrossrefGoogle Scholar

  • [8] Travis WD, Rekhtman N. Pathological diagnosis and classification of lung cancer in small biopsies and cytology: strategic management of tissue for molecular testing. Semin Respir Crit Care Med 2011;32:22-31. CrossrefGoogle Scholar

  • [9] Minna JD, Roth JA, Gazdar AF. Focus on lung cancer. Cancer Cell 2002;1:49-52. CrossrefGoogle Scholar

  • [10] Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005;121:823-35. CrossrefGoogle Scholar

  • [11] Giangreco A, Groot KR, Janes SM. Lung cancer and lung stem cells: strange bedfellows? Am J Respir Crit Care Med 2007;175:547-53. CrossrefGoogle Scholar

  • [12] Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 2001;294:853-8. CrossrefGoogle Scholar

  • [13] Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001;294:858-62. CrossrefGoogle Scholar

  • [14] Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science 2001;294:862-4. CrossrefGoogle Scholar

  • [15] Ambros V. The functions of animal microRNAs. Nature 2004;431:350-5. Google Scholar

  • [16] Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 2007;96 Suppl:R40-4. Google Scholar

  • [17] Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005;6:376-85. CrossrefGoogle Scholar

  • [18] Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003;17:3011-6. CrossrefGoogle Scholar

  • [19] Mingot JM, Bohnsack MT, Jakle U, Gorlich D. Exportin 7 defines a novel general nuclear export pathway. EMBO J 2004;23:3227-36. CrossrefGoogle Scholar

  • [20] Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science 2004;303:95-8. Google Scholar

  • [21] Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 2005;123:631-40. CrossrefGoogle Scholar

  • [22] Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009;136:642-55. CrossrefGoogle Scholar

  • [23] Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta;1803:1231-43. Google Scholar

  • [24] He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004;5:522-31. CrossrefGoogle Scholar

  • [25] Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215-33. CrossrefGoogle Scholar

  • [26] Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature 2008;455:58-63. Google Scholar

  • [27] Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature 2008;455:64-71. Google Scholar

  • [28] Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006;6:259-69. CrossrefGoogle Scholar

  • [29] Karube Y, Tanaka H, Osada H, Tomida S, Tatematsu Y, Yanagisawa K, et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 2005;96:111-5. CrossrefGoogle Scholar

  • [30] Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 2007;39:673-7. CrossrefGoogle Scholar

  • [31] Jay C, Nemunaitis J, Chen P, Fulgham P, Tong AW. miRNA profiling for diagnosis and prognosis of human cancer. DNA Cell Biol 2007;26:293-300. CrossrefGoogle Scholar

  • [32] Hu Z, Chen J, Tian T, Zhou X, Gu H, Xu L, et al. Genetic variants of miRNA sequences and non-small cell lung cancer survival. J Clin Invest 2008;118:2600-8. Google Scholar

  • [33] Ranade AR, Cherba D, Sridhar S, Richardson P, Webb C, Paripati A, et al. MicroRNA 92a-2*: a biomarker predictive for chemoresistance and prognostic for survival in patients with small cell lung cancer. J Thorac Oncol 2010;5:1273-8. CrossrefGoogle Scholar

  • [34] Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer cell 2006;9:189-98. CrossrefGoogle Scholar

  • [35] Wang XC, Tian LL, Wu HL, Jiang XY, Du LQ, Zhang H, et al. Expression of miRNA-130a in nonsmall cell lung cancer. Am J Med Sci 2010;340:385-8. Google Scholar

  • [36] Silva J, Garcia V, Zaballos A, Provencio M, Lombardia L, Almonacid L, et al. Vesicle-related microRNAs in plasma of NSCLC patients and correlation with survival. Eur Respir J 2010. Google Scholar

  • [37] Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY. MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesionindependent growth. Cancer Res 2007;67:8433-8. Google Scholar

  • [38] Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008;27:2128-36. CrossrefGoogle Scholar

  • [39] Wang P, Zou F, Zhang X, Li H, Dulak A, Tomko RJ, Jr., et al. microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Res 2009;69:8157-65. CrossrefGoogle Scholar

  • [40] Ribas J, Ni X, Haffner M, Wentzel EA, Salmasi AH, Chowdhury WH, et al. miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res 2009;69:7165-9. CrossrefGoogle Scholar

  • [41] Seike M, Goto A, Okano T, Bowman ED, Schetter AJ, Horikawa I, et al. MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc Natl Acad Sci U S A 2009;106:12085-90. CrossrefGoogle Scholar

  • [42] Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 2008;18:350-9. CrossrefGoogle Scholar

  • [43] Hatley ME, Patrick DM, Garcia MR, Richardson JA, Bassel-Duby R, van Rooij E, et al. Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer cell 2010;18:282-93. CrossrefGoogle Scholar

  • [44] Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH, et al. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 2008;27:4373-9. Google Scholar

  • [45] Liu X, Sempere LF, Ouyang H, Memoli VA, Andrew AS, Luo Y, et al. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest 2010;120:1298-309. CrossrefGoogle Scholar

  • [46] Xi S, Yang M, Tao Y, Xu H, Shan J, Inchauste S, et al. Cigarette smoke induces C/EBP-beta-mediated activation of miR-31 in normal human respiratory epithelia and lung cancer cells. PLoS One 2010;5:e13764. CrossrefGoogle Scholar

  • [47] Ma Y, Fiering S, Black C, Liu X, Yuan Z, Memoli VA, et al. Transgenic cyclin E triggers dysplasia and multiple pulmonary adenocarcinomas. Proc Natl Acad Sci U S A 2007;104:4089-94. CrossrefGoogle Scholar

  • [48] Liu CJ, Tsai MM, Hung PS, Kao SY, Liu TY, Wu KJ, et al. miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma. Cancer Res 2010;70:1635-44. CrossrefGoogle Scholar

  • [49] Valastyan S, Chang A, Benaich N, Reinhardt F, Weinberg RA. Concurrent suppression of integrin alpha5, radixin, and RhoA phenocopies the effects of miR-31 on metastasis. Cancer Res 2010;70:5147-54. CrossrefGoogle Scholar

  • [50] Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC, et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 2009;137:1032-46. CrossrefGoogle Scholar

  • [51] Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004;64:3753-6. CrossrefGoogle Scholar

  • [52] Inamura K, Togashi Y, Nomura K, Ninomiya H, Hiramatsu M, Satoh Y, et al. let-7 microRNA expression is reduced in bronchioloalveolar carcinoma, a non-invasive carcinoma, and is not correlated with prognosis. Lung cancer 2007;58:392-6. CrossrefGoogle Scholar

  • [53] Raponi M, Dossey L, Jatkoe T, Wu X, Chen G, Fan H, et al. MicroRNA classifiers for predicting prognosis of squamous cell lung cancer. Cancer Res 2009;69:5776-83. CrossrefGoogle Scholar

  • [54] Gallardo E, Navarro A, Vinolas N, Marrades RM, Diaz T, Gel B, et al. miR-34a as a prognostic marker of relapse in surgically resected non-small-cell lung cancer. Carcinogenesis 2009;30:1903-9. CrossrefGoogle Scholar

  • [55] Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Korner H, et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 2008;7:2591-600. CrossrefGoogle Scholar

  • [56] He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, et al. A microRNA polycistron as a potential human oncogene. Nature 2005;435:828-33. Google Scholar

  • [57] Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 2008;40:43-50. CrossrefGoogle Scholar

  • [58] Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 2007;26:5017-22. CrossrefGoogle Scholar

  • [59] Tazawa H, Tsuchiya N, Izumiya M, Nakagama H. Tumorsuppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A 2007;104:15472-7. CrossrefGoogle Scholar

  • [60] Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, et al. p53-mediated activation of miRNA34 candidate tumorsuppressor genes. Curr Biol 2007;17:1298-307. CrossrefGoogle Scholar

  • [61] Zenz T, Mohr J, Eldering E, Kater AP, Buhler A, Kienle D, et al. miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood 2009;113:3801-8. CrossrefGoogle Scholar

  • [62] Fujita Y, Kojima K, Hamada N, Ohhashi R, Akao Y, Nozawa Y, et al. Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem Biophys Res Commun 2008;377:114-9. CrossrefGoogle Scholar

  • [63] Sun F, Fu H, Liu Q, Tie Y, Zhu J, Xing R, et al. Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett 2008;582:1564-8. Google Scholar

  • [64] He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, et al. A microRNA component of the p53 tumour suppressor network. Nature 2007;447:1130-4. Google Scholar

  • [65] Kong YW, Cannell IG, de Moor CH, Hill K, Garside PG, Hamilton TL, et al. The mechanism of micro-RNA-mediated translation repression is determined by the promoter of the target gene. Proc Natl Acad Sci U S A 2008;105:8866-71. CrossrefGoogle Scholar

  • [66] Leucci E, Cocco M, Onnis A, De Falco G, van Cleef P, Bellan C, et al. MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation. J Pathol 2008;216:440-50. CrossrefGoogle Scholar

  • [67] Pigazzi M, Manara E, Baron E, Basso G. miR-34b targets cyclic AMP-responsive element binding protein in acute myeloid leukemia. Cancer Res 2009;69:2471-8. CrossrefGoogle Scholar

  • [68] Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A 2008;105:13421-6. Google Scholar

  • [69] Liu X, Sempere LF, Galimberti F, Freemantle SJ, Black C, Dragnev KH, et al. Uncovering growth-suppressive MicroRNAs in lung cancer. Clin Cancer Res 2009;15:1177-83. CrossrefGoogle Scholar

  • [70] Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 2004;101:2999-3004. CrossrefGoogle Scholar

  • [71] Lee YS, Dutta A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 2007;21:1025-30. CrossrefGoogle Scholar

  • [72] Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, et al. RAS is regulated by the let-7 microRNA family. Cell 2005;120:635-47. CrossrefGoogle Scholar

  • [73] Hebert C, Norris K, Scheper MA, Nikitakis N, Sauk JJ. High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Mol Cancer 2007;6:5. CrossrefGoogle Scholar

  • [74] Koscianska E, Baev V, Skreka K, Oikonomaki K, Rusinov V, Tabler M, et al. Prediction and preliminary validation of oncogene regulation by miRNAs. BMC Mol Biol 2007;8:79. CrossrefGoogle Scholar

  • [75] Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D, et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 2007;67:7713-22. CrossrefGoogle Scholar

  • [76] Dutt A, Wong KK. Mouse models of lung cancer. Clin Cancer Res 2006;12:4396s-402s. CrossrefGoogle Scholar

  • [77] Meuwissen R, Berns A. Mouse models for human lung cancer. Genes Dev 2005;19:643-64. CrossrefGoogle Scholar

  • [78] Liu X, Sempere LF, Guo Y, Korc M, Kauppinen S, Freemantle SJ, et al. Involvement of microRNAs in lung cancer biology and therapy. Translational research : the journal of laboratory and clinical medicine 2011;157:200-8. Google Scholar

  • [79] Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA, et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proceedings of the National Academy of Sciences of the United States of America 2008;105:3903-8. Google Scholar

  • [80] Zheng S, El-Naggar AK, Kim ES, Kurie JM, Lozano G. A genetic mouse model for metastatic lung cancer with gender differences in survival. Oncogene 2007;26:6896-904. CrossrefGoogle Scholar

  • [81] Gibbons DL, Lin W, Creighton CJ, Rizvi ZH, Gregory PA, Goodall GJ, et al. Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes & development 2009;23:2140-51. Google Scholar

  • [82] Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America 2002;99:15524-9. Google Scholar

  • [83] Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature 2005;435:834-8. Google Scholar

  • [84] Yu SL, Chen HY, Chang GC, Chen CY, Chen HW, Singh S, et al. MicroRNA signature predicts survival and relapse in lung cancer. Cancer cell 2008;13:48-57. CrossrefGoogle Scholar

  • [85] Landi MT, Zhao Y, Rotunno M, Koshiol J, Liu H, Bergen AW, et al. MicroRNA expression differentiates histology and predicts survival of lung cancer. Clin Cancer Res 2010;16:430-41. CrossrefGoogle Scholar

  • [86] Xi Y, Nakajima G, Gavin E, Morris CG, Kudo K, Hayashi K, et al. Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA 2007;13:1668-74. CrossrefGoogle Scholar

  • [87] Sempere LF, Christensen M, Silahtaroglu A, Bak M, Heath CV, Schwartz G, et al. Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res 2007;67:11612-20. CrossrefGoogle Scholar

  • [88] Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumorderived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 2008;110:13-21. CrossrefGoogle Scholar

  • [89] Xing L, Todd NW, Yu L, Fang H, Jiang F. Early detection of squamous cell lung cancer in sputum by a panel of microRNA markers. Mod Pathol 2010;23:1157-64. CrossrefGoogle Scholar

  • [90] Yu L, Todd NW, Xing L, Xie Y, Zhang H, Liu Z, et al. Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers. International journal of cancer Journal international du cancer 2010;127:2870-8. CrossrefGoogle Scholar

  • [91] Xie Y, Todd NW, Liu Z, Zhan M, Fang H, Peng H, et al. Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung cancer 2010;67:170-6. CrossrefGoogle Scholar

  • [92] Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell research 2008;18:997-1006. CrossrefGoogle Scholar

  • [93] Keller A, Leidinger P, Borries A, Wendschlag A, Wucherpfennig F, Scheffler M, et al. miRNAs in lung cancer - studying complex fingerprints in patient’s blood cells by microarray experiments. BMC cancer 2009;9:353. CrossrefGoogle Scholar

  • [94] Shen J, Todd NW, Zhang H, Yu L, Lingxiao X, Mei Y, et al. Plasma microRNAs as potential biomarkers for non-small-cell lung cancer. Lab Invest 2011;91:579-87. CrossrefGoogle Scholar

  • [95] Hennessey PT, Sanford T, Choudhary A, Mydlarz WW, Brown D, Adai AT, et al. Serum microRNA biomarkers for detection of non-small cell lung cancer. PloS one 2012;7:e32307. CrossrefGoogle Scholar

  • [96] Boeri M, Verri C, Conte D, Roz L, Modena P, Facchinetti F, et al. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proceedings of the National Academy of Sciences of the United States of America 2011;108:3713-8. Google Scholar

  • [97] Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature cell biology 2007;9:654-9. CrossrefGoogle Scholar

  • [98] Hu Z, Chen X, Zhao Y, Tian T, Jin G, Shu Y, et al. Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2010;28:1721-6. Google Scholar

  • [99] Xing L, Todd NW, Yu L, Fang H, Jiang F. Early detection of squamous cell lung cancer in sputum by a panel of microRNA markers. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc 2010;23:1157-64. Google Scholar

  • [100] Tian T, Shu Y, Chen J, Hu Z, Xu L, Jin G, et al. A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2009;18:1183-7. Google Scholar

  • [101] Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I, et al. A SNP in a let-7 microRNA complementary site in the KRAS 3’ untranslated region increases non-small cell lung cancer risk. Cancer research 2008;68:8535-40. CrossrefGoogle Scholar

  • [102] Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nature reviews Drug discovery 2010;9:775-89. CrossrefGoogle Scholar

  • [103] miRview Lung: A microRNA-based Test to Identify Lung Tumor Type from Pre and Post Operative Samples. 2012;www.mirnablog.com Google Scholar

  • [104] Sempere LF, Liu X, Dmitrovsky E. Tumor-suppressive microRNAs in Lung cancer: diagnostic and therapeutic opportunities. The Scientific World Journal 2009;9:626-8. Google Scholar

  • [105] Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci U S A 2005;102:3627-32. CrossrefGoogle Scholar

  • [106] Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005;65:7065-70. CrossrefGoogle Scholar

  • [107] Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 2005;207:243-9. Google Scholar

  • [108] Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 2004;39:167-9. Google Scholar

  • [109] van den Berg A, Kroesen BJ, Kooistra K, de Jong D, Briggs J, Blokzijl T, et al. High expression of B-cell receptor inducible gene BIC in all subtypes of Hodgkin lymphoma. Genes Chromosomes Cancer 2003;37:20-8. Google Scholar

  • [110] Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 2007;26:731-43. CrossrefGoogle Scholar

  • [111] Patnaik SK, Kannisto E, Knudsen S, Yendamuri S. Evaluation of microRNA expression profiles that may predict recurrence of localized stage I non-small cell lung cancer after surgical resection. Cancer Res 2010;70:36-45. CrossrefGoogle Scholar

  • [112] Bader AG, Brown D, Stoudemire J, Lammers P. Developing therapeutic microRNAs for cancer. Gene therapy 2011;18:1121-6. CrossrefGoogle Scholar

  • [113] Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA target predictions. Nat Genet 2005;37:495-500. CrossrefGoogle Scholar

  • [114] Wu Y, Crawford M, Yu B, Mao Y, Nana-Sinkam SP, Lee LJ. MicroRNA delivery by cationic lipoplexes for lung cancer therapy. Molecular pharmaceutics 2011;8:1381-9. CrossrefGoogle Scholar

  • [115] Trang P, Wiggins JF, Daige CL, Cho C, Omotola M, Brown D, et al. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther 2011;19:1116-22. CrossrefGoogle Scholar

  • [116] Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer research 2010;70:5923-30. CrossrefGoogle Scholar

  • [117] Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005;438:685-9. Google Scholar

  • [118] Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L, et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 2008;7:759-64. CrossrefGoogle Scholar

  • [119] Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K, Omotola M, et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene 2010;29:1580-7. CrossrefGoogle Scholar

  • [120] Gabriely G, Yi M, Narayan RS, Niers JM, Wurdinger T, Imitola J, et al. Human glioma growth is controlled by microRNA-10b. Cancer research 2011;71:3563-72. CrossrefGoogle Scholar

  • [121] Ma L, Reinhardt F, Pan E, Soutschek J, Bhat B, Marcusson EG, et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nature biotechnology 2010;28:341-7. CrossrefGoogle Scholar

  • [122] Lammers P. Mirna Therapeutics Secures $34.5 Million Series C Financing to Advance Oncology microRNA Pipeline into the Clinic. 2012; www.businesswire.com Google Scholar

  • [123] Zabludoff S. Therapeutic Areas of Regulus Therapeutics. 2012;www.regulusrx.com Google Scholar

About the article

Received: 2014-04-12

Accepted: 2014-11-23

Published Online: 2015-04-29


Citation Information: microRNA Diagnostics and Therapeutics, ISSN (Online) 2084-6843, DOI: https://doi.org/10.2478/micrnat-2014-0006.

Export Citation

© 2015 Jianfei Zhao et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in