Jump to ContentJump to Main Navigation
Show Summary Details
More options …


The Journal of Mineralogical Society of Poland

2 Issues per year

CiteScore 2016: 0.36

SCImago Journal Rank (SJR) 2016: 0.127
Source Normalized Impact per Paper (SNIP) 2016: 0.197

Open Access
See all formats and pricing
More options …

Low-Grade Metamorphism of Permian Mafic Rocks From the Gorzów Wielkopolski Block (Fore Sudetic Monocline, Nw Poland): Age and Mechanism

Pawet Bylina
  • Institute of Geological Sciences, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warszawa, Poland; bylina@twarda.pan.pl
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2007-02-05 | DOI: https://doi.org/10.2478/v10002-007-0004-y

Low-Grade Metamorphism of Permian Mafic Rocks From the Gorzów Wielkopolski Block (Fore Sudetic Monocline, Nw Poland): Age and Mechanism

The metavolcanic rocks in the Gorzów Wielkopolski area (NW Poland) are andesite-basalts and andesites derived from contaminated within-plate subalkaline basalt melts. K-Ar dating of primary K-feldspar yields an extrusion age of 285±5 Ma. This new date suggests that these rocks may be the youngest dated Permo-Carboniferous volcanic rocks within the eastern margin of the North German Basin.

Petrological and micro-thermometric data indicate that the volcanic rocks were altered by a sub-greenschist facies, metamorphic process that proceeded within temperatures and pressures ranging from 195-290°C and 63-96 MPa, respectively. The major metamorphic phases, corrensite, pumpellyite, laumontite and prehnite, formed due to interaction between the original volcanic rock and low-saline Na2SO4-rich hydrothermal fluids. Numerical modelling indicates fluid flow in fractures as the most probable explanation for the low-grade hydrothermal metamorphism. Model calculations suggest that the process was of short duration, ca 140-250 years. K-Ar dating reveals three Mesozoic episodes at 121±2 Ma, 188-190 Ma and 149±4 Ma that can be ascribed to the metamorphism. These ages are similar to previously determined Mesozoic ages from altered volcanic- and clastic rocks in the North German Basin and in the Polish Basin.

Keywords: K-Ar dating; hydrothermal metamorphism; metavolcanic rocks; Polish Basin; North German Basin; Mesozoic hydrothermal activity

  • AWDANKIEWICZ M., 1999a: Volcanism in a late Variscan intramontane trough: Carboniferous and Permian volcanic centres of the Intra-Sudetic Basin, SW Poland. Geologia Sudetica 32, 13-47.Google Scholar

  • AWDANKIEWICZ M., 1999b: Volcanism in a late Variscan intramontane trough: the petrology and geochemistry of the Carboniferous and Permian volcanic rocks of the Intra-Sudetic Basin, SW Poland. Geologia Sudetica 32, 83-112.Google Scholar

  • BAKHT M.S., 2000: Borehole geology and hydrothermal alteration of well KJ-28 Krafla high-temperature area, NE Iceland. In: Proceedings of the World Geothermal Congress 2000, 947-952, Kyushu-Tohoku, Japan.Google Scholar

  • BEAUFORT D., PAPANAGIOTOU P., PARTIER P., TRAINEAU H., 1995: Les interstratifiés I-S et C-S dans les champs géothermiques actifs: sont-ils comparable à ceux des séries diagénétiques? Bulletin du Centre des Recherches, Exploration-Production, Elf — Aquitaine 19 (1), 267-291Google Scholar

  • BECHTEL A., ELLIOTT W.C., WAMPLER J.M., OSZCZEPALSKI S., 1999: Clay mineralogy, crystallinity, and K-Ar ages of illites within the Polish Zechstein basin: Implications for the age of Kupferschiefer mineralization. Economic Geology 94, 261-272.CrossrefGoogle Scholar

  • BENEK R., KRAMER W., MC CANN T., SCHECK M., NEGENDANK J.F.W., KORICH D., HUEBSCHER H.-D., BAYER U., 1996: Permo-Carboniferous magmatism of the Northeast German Basin. Tectonophysics 266, 379-404.Google Scholar

  • BEVINS R.E., ROBINSON D., ROWBOTHAM G., 1991: Compositional variations in mafic phyllosilicates from regional low-grade metabasites and application of the chlorite geothermometer. Journal of Metamorphic Geology 9, 711-721.CrossrefGoogle Scholar

  • BLUNDELL D.J., KARNKOWSKI P.H., ALDERTON D.H.M., OSZCZEPALSKIS., KUCHA H., 2003: Copper mineralization of the Polish Kupferschifer: a proposed basement fault-fracture system of fluid flow. Economic Geology 98, 1487-1495.CrossrefGoogle Scholar

  • BOLES J.R., COOMBS D.S., 1977: Zeolite-facies alteration of sandstones in the Southland syncline, New Zealand. American Journal of Science 277, 982-1012.Google Scholar

  • BONESS M., HAACK U., FELDMANN K.F., 1990: Rb/Sr Datierung der hydrothermalen Pb-Zn Vererzung von Bad Grund (Harz), BRD. Chemie der Erde 50, 125.Google Scholar

  • BRECHT G.A., 1999: Authigene Phyllosilicate in permokarbonen SiO2-reichen Vulkaniten Ostdeutscha- lands. Berliner geowissenschaftliche Abhhandlungen, Reihe A 201, 1-181.Google Scholar

  • BRECHT G.A., BREITKREUTZ C., 1997: Hydrothermal phyllosilicates in Permian silica-rich volcanic rocks of eastern Germany. Terra Nostra 9 Abs. Suppl. 1,575.Google Scholar

  • BRECHT G.A., WOLFGRAMM M., 1998: Mesozoic thermal activity in the NE-German basin recorded in authigenic phyllosilicatès of Permocarboniferous SiO2-rich volcanic rocks. Scripta Facultatis Scientarium Naturalum Universitatis Masarykianć Brunensis Geology 26, 30-31.Google Scholar

  • BREITKREUZ C., KENNEDY A., 1999: Magmatic flare-up at the Carboniferous/Permian boundary in the German Basin revealed by SHRIMP zircon ages. Tectonics 302, 307-326.Google Scholar

  • BRENAN J.M., 1991: Development of metamorphic permeability: implications for fluid transport processes. Reviews in Mineralogy 26, 291-320.Google Scholar

  • BRINK H.-J., 2005: The evolution of the North German Basin and the metamorphism of the lower crust. International Journal of Earth Sciences 94, 1103-1116.CrossrefGoogle Scholar

  • BUNIAK A., 2004: Mapa lokalizacji złóż wèlowodorów w utworach dolomitu głównego http://www.pgi.gov.pl/images/stories/ropa_Ca2_zloza.jpg

  • BYLINA P., DUBIŃSKA E., KAPROŃ G., KOZUBOWSKI J. A., KOZŁOWSKI A., BAGIŃSKI B., KULICKI C., 2000: Corrensite from metavolcanic rocks near Gorzów Wielkopolski (NW Poland): its position in very low grade metamorphic assemblage. Mineralogical Society of Poland — Special Papers 17, 128-131.Google Scholar

  • CARR P.F., PEMBERTON J.W., NUNAN E., 1999: Low-grade metamorphism of mafic lavas, Upper Permian Broughton Formation, Sydney Basin. Australian Journal of Earth Sciences 46, 839-849CrossrefGoogle Scholar

  • CHO M., LIOU J., 1987: Prehnite-pumpellyite to greenschist facies transition in the Karmutsen metabasites, Vancouver Island, B. C. Journal of Petrology 28, 417-443.CrossrefGoogle Scholar

  • CLARK C., JONES P., 2003: Hydrothermal brecciation due to fluid pressure fluctuations: examples from the Oladry Domain, South Australia. Tectonophysics 366, 187-206.Google Scholar

  • CONNOLLY J.A.D., 1997: Mid-crustal focused fluid movement: thermal consequences and silica transport. In: Jamtveit B., Yardley B. (eds), Fluid Flow Transport in Rocks. Mechanisms and Effects, 235-250, Chapman Hall.Google Scholar

  • CORTESOGNO L., LUCCHETTI G., SPADEA P., 1984: Pumpellyite in low-grade metamorphic rocks from Ligurian and Lucanian Apennines, Maritime Alps and Calabria. Contributions to Mineralogy and Petrology 85, 14-24.Google Scholar

  • CUI X., NABELEK P.I., LIU M., 2003: Reactive flow of mixed CO2-H2O fluid and progress of calc-silicate reactions in contact metamorphic aureoles: insights from two-dimensional numerical modeling. Journal of Metamorphic Geology 21, 663-684.CrossrefGoogle Scholar

  • CZECHOWSKI F., PIELA J., 1997: Skĺd molekularny substancji organicznej zawartej w dolomicie głównym oraz skaĺch wylewnych z otworu Namyślin-1. Nafta-Gaz 53, 299-308 (in Polish).Google Scholar

  • CZERNY J., MUSZYŃSKI M., 1997: Co-magmatism of the Permian volcanites of the Krzeszowice area in the light of petrochemical data. Mineralogia Polonica 28, 3-25.Google Scholar

  • CZERNY J., MUSZYŃSKI M., 2000: The current state of recognition of Upper Palaeozoic volcanites of the Cracow area. Mineralogical Society of Poland — Special Papers 17, 13-17.Google Scholar

  • DADLEZ R., NARKIEWICZ M., STEVENSON R.A., VISSER M.T.M., VAN WEES J.-D., 1995: Tectonic evolution of the Mid-Polish Trough: modeling implications and significance for central European geology. Tectonophysics 252, 179-195.Google Scholar

  • DIGEL S.C., GORDON T.M., 1995: Phase relations in metabasites and pressure-temperature conditions at the prehnite-pumpellyite to greenschist facies transition, Flin Flon, Manitoba, Canada. In: Schiffman P., Day H.W. (eds), Low-Grade Metamorphism of Mafic Rocks, Geological Society of America Special Papers 296, 67-80, Geological Society of America.Google Scholar

  • DUBIŃSKA E., BAGIŃSKI B., KAPROŃ G., BYLINA P., 1998: Pumpellyit w zmienionych zasadowych skaĺach wulkanicznych z okolic Gorzowa Wielkopolskiego (pólnocno-zachodnia cześć monokliny przedsudeckiej): przejawy metamorfizmu bardzo niskiego stopnia (VLGM). Przeglad Geologiczny 46, 71-79 (in Polish with English abstract).Google Scholar

  • DUBIŃSKA E., BYLINA P., BAGIŃSKI B., KAPROŃ G., KOZLOWSKI A., 2004a: Geochemistry and mineralogy of Rotliegend metavolcanic mafic rocks from Poland: pervasive low-grade metamorphism versus parent rock signature. In: Wilson M., Neumann E.-R., Davies G.R., Timmerman M.J., Heeremans M., Larsen B.T. (eds), Permo-Carboniferous Magmatism and Rifting in Europe, Geological Society Special Publications 223, 393-413, The Geological Society of London.Google Scholar

  • DUBIŃSKA E., BYLINA P., KOZLOWSKI A., DÖRR W., NEJBERT K., SCHASTOK J., KULICKI C., 2004b: U-Pb dating of serpentinization: hydrothermal zircon from a metasomatic rodingite shell (Sudetic ophiolite, SW Poland). Chemical Geology 203, 183-203.CrossrefGoogle Scholar

  • EHLERS T.A., CHAPMAN D.S., 1999: Normal fault thermal regimes: conductive and hydrothermal heat transfer surrounding the Wasatch fault, Utah. Tectonophysics 312, 217-234.Google Scholar

  • FLEKKØY E.G., MALTHE-SØRENSSEN A., JAMTVEIT B. 2002: Modeling hydrofracture. Journal of Geophysical Research - Solid Earth 107(B8), 2151, 1-11.CrossrefGoogle Scholar

  • FOLAND K.A., 1994: Argon diffusion in feldspar. In: Parsons I. (ed.), Feldspars and Their Reactions, 415-447, Kluwer, Dordrecht.Google Scholar

  • FREY M., DE CAPITANI C., LIOU J.G., 1991: A new petrogenetic grid for low-grade metabasites. Journal of Metamorphic Geology 9, 497-509.CrossrefGoogle Scholar

  • FRÜH-GREEN G.L., PLAS A., DELL'ANGELO L.N., 1996: Mineralogic and stable isotope record of polyphase alteration of upper crustal gabbros of the East Pacific Rise (Hess Deep, Site 894). Proceedings of the Ocean Drilling Program, Scientific Results 147, 235-254.Google Scholar

  • FYFE W.S., PRICE N., THOMPSON A.V., 1978: Fluids in the Earth's Crust. Elsevier Science, New York, 383 pp.Google Scholar

  • GIANELLI G., MEKURIA N., BATTAGLIA S., CHERSICLA A., GAROFALO P., RUGGIERI G., MAN-GANELLI M., GEBREGZIABHER Z., 1998: Water — rock interaction and hydrothermal mineral equilibria in the Tendaho geothermal system. Journal of Volcanology and Geothermal Research 86, 253-276.CrossrefGoogle Scholar

  • GOLL M., LIPPOLT H.J., HOEFS J., 2003: Mezozoic alteration of Permian volcanic rocks (Thüringer Wald, Germany): Ar, Sr and O isotope evidence. Chemical Geology 199, 209-231.Google Scholar

  • GÓRNIAK K., GAWEL A., MUSZYŃSKI M., PROTAS A., RATAJCZAK T., SZYDLAK T., 2004: Wplyw glebokości pogrzebania na proces illityzacji smektytu w czarnych lupkach dinantu z Pomorza Zachodniego. In: Protas A., Mikolajewski Z., Buniak A. (eds), Pozycja geologiczna i petrologia utworów podloźa permu w strefie Koszalin-Chojnice, 43-95, Bogucki Wydawnictwa Naukowe, Poznań (in Polish).Google Scholar

  • GREGOSIEWICZ Z., 1986: Wstepne wyniki dotychczasowych badanA petrograficznych utworów podperm-skich w zachodniej cześci Monokliny Przedsudeckiej. Nafta 42, 301-304 (in Polish).Google Scholar

  • GREGOSIEWICZ Z., 1990: Rozpoznanie petrograficzne utworów podpermskich we wschodniej czěści Monokliny Przedsudeckiej. Nafta 46, 54-60 (in Polish).Google Scholar

  • HAACK U.K., ZIMMERMANN H.D., 1996: Retrograde mineral reactions: a heat source in the continental crust? Geologische Rundschau 85, 130-137.CrossrefGoogle Scholar

  • HAYBA D.O., INGEBRITSEN S.E., 1994: The computer model HYDROTHERM, a three-dimensional finite-difference model to simulate ground-water flow and heat transport in the temperature range of 0 to 1,200 degrees Celsius. U.S. Geological Survey Water-Resources Investigations, Report 94-4045, US Geological Survey, Reston (VA), 85 pp.Google Scholar

  • HAYDUKIEWICZ J., MUSZER J., KLAPCIŃSKI J., 1999: Dokumentacja paleontologiczna osadów pod-permskich w rejonie Zbaszynia (Monoklina Przedsudecka). In: Muszer A. (ed.), Wybrane zagadnienia stratygrafii, tektoniki i okruszcowania Dolnego Slska, 7-17, Wyd. Uniwersytetu Wroclawskiego, Wroclaw (in Polish).Google Scholar

  • HEIJLEN W., MUCHEZ P., BANKS D.A., SCHNEIDER J., KUCHA H., KEPPENS E., 2003: Carbonate-hosted Zn-Pb deposits in Upper Silesia, Poland: origin and evolution of mineralizing fluids and constraints on genetic models. Economic Geology 98, 911-932.CrossrefGoogle Scholar

  • HERMAN Z., MAMCZUR S., 1986: Anomalnie wysokie ciśnienia zlozowe w anhydrycie glównym cech-sztynu. Nafta 42, 201-208 (in Polish)Google Scholar

  • HUEBSCHER H.-D., 1995: Zur epigenetischen Metasomatoze in der permosilesischen basaltischen Mg-andesiten von der Ost-Branderburg, Deutschland. Terra Nostra 7, 63-66.Google Scholar

  • HUENGES E., ERZINGER J., KÜCK J., ENGESER B., KESSELS W., 1997: The permeable crust: Geohydraulic properties down to 9101 m depth. Journal of Geophysical Research 102 (B8), 18255-18265.CrossrefGoogle Scholar

  • JACKOWICZ E., 1994: Permskie skaly wulkaniczne pólnocnej cześci monokliny przedsudeckiej. Prace Państwowego Instytutu Geologicznego 145, 1-47 (in Polish).Google Scholar

  • JACKOWICZ E., 1995: Lower Rotliegend volcanic rocks from the western part of the Polish Lowland. Terra Nostra 7, 67-69.Google Scholar

  • JANIK T., YLINIEMI J., GRAD M., THYBO H., TIIRA T., POLONAISE P2 WORKING GROUP, 2002: Crustal structure across the TESZ along POLONAISE'97 seismic profile P2 in NW Poland. Tectonophysics 360, 129-152.Google Scholar

  • JAROSZEWSKI W., 1993: Manifestations of hydrotectonics in Zn-Pb mineralization at Trzebionka mine (Silesian-Cracow zinc-lead ore district, Poland). Geological Quarterly 37, 241-254.Google Scholar

  • JENSEN S.L., JANIK T., THYBO H., POLONAISE PROFILE PI WORKING GROUP, 1999: Seismic structure of the Palaeozoic Platform along POLONAISE'97 profile PI in northwestern Poland. Tectonophysics 314, 123-143.Google Scholar

  • JOURDE H., FLODIN E. A., AYDIN A., DURLOFSKY L. J., WEN X.-H., 2002: Computing permeability of fault zones in eolian sandstone from outcrop measurements. AAPG Bulletin 86, 1187-1200.Google Scholar

  • JOVE C., HACKER R., 1997: Experimental investigation of laumontite → wairakite + H2O: a model diagenetic reaction. American Mineralogist 82, 782-789.Google Scholar

  • JUSKOWIAK-SCHOENEICHOWA M., 1979: Budowa geologiczna niecki szczecińskiej i bloku Gorzowa. Prace Instytutu Geologicznego 96, 1-178 (in Polish with English abstract).Google Scholar

  • KARNKOWSKI P.H., 1999: Origin and evolution of the Polish Rotliegend basin. Polish Geological Institute, Special Papers 3, 1-93.Google Scholar

  • KLAPCIŃSKI J., JUROSZEK C., SACHANBIŃSKI M., 1988: Wulkanity dolnego permu pólnocnej cześci monokliny przedsudeckiej. Acta Universitatis Wratislaviensis, Prace Geologiczno-Mineralogiczne 41, 3-31 (in Polish).Google Scholar

  • KLAPCIŃSKI J., KARWOWSKI L., 1978: Fauna utworów cechsztyńskich w pólnocnej cześci monokliny przedsudeckiej. Geologia Sudetica 13, 67-81 (in Polish with English abstract).Google Scholar

  • KOZLOWSKA A., POPRAWA P., 2004: Datowanie K/Ar diagenetycznego illitu z piaskowców karbońskich obszaru mazowieckiego i ich znaczenie dla rekonstrukcji historii termicznej. In: Micha-lik M., Jacher-Śliwczyńśka K., Skiba M., Michalik J. (eds), Datowanie Mineralów i Skal, VIII Ogól-nopolska Sesja Naukowa, 18-19 listopada 2004, 64-68, Kraków, Poland (in Polish with English abstract).Google Scholar

  • KRZEMIŃSKI L., 2002: Pochodzenie materialu detrytycznego w karbońskich piaskowcach wschodniej cześci obszaru przedsudeckiego: petrografia i geochemia. Ph.D. thesis (manuscript), Polish Geological Institute, Warszawa, 1-143 (in Polish).Google Scholar

  • KRZYWIEC P., 2004: Triassic evolution of the Klodawa salt structure: basement-controlled salt tectonics within the Mid-Polish Trough (Central Poland). Geological Quarterly 48, 123-134.Google Scholar

  • KUS J., CRAMER B., FOCKEL F., 2005: Effects of a Cretaceous structural inversion and postulated high heat flow event on petroleum system of the western Lower Saxony basin and the charge history of the Apeldorn gas field. Netherlands Journal of Geosciences 84, 3-24.Google Scholar

  • LAMARCHE J., SCHECK-WENDEROTH M., 2005: 3D structural model of the Polish Basin. Tectonophysics 397, 73-91.Google Scholar

  • LIEWIG N., CLAUER N., 2000: K-Ar dating of varied microtextural illite in Permian gas reservoirs, northern Germany. Clay Minerals 35, 271-281.CrossrefGoogle Scholar

  • LIOU J. G., MARUYAMA S., CHO M., 1985: Phase equilibria and mineral parageneses of metabasites in low-grade metamorphism. Mineralogical Magazine 49, 321-333.CrossrefGoogle Scholar

  • LIOU J. G., MARUYAMA S., CHO M., 1987: Very low-grade metamorphism of volcanic and volcaniclastic rocks-mineral assemblages and mineral facies. In: Frey M. (ed.), Low Temperature Metamorphism. 59-113, Blackie, Glasgow and London.Google Scholar

  • LIPPOLT H.J., RACZEK I., SCHLEICHER H., 1982: Isotopenalter (40Ar/39Ar; Rb-Sr) eines Unteren Rotliegend-Biotits aus der Wrzesnia/Polen. Aufschluss 33, 13-25.Google Scholar

  • LOVERA, O.M., RICHTER, F.M., HARRISON, T.M., 1989: 40Ar/39Ar thermochronometry for slowly cooled samples having a distribution of diffusion domain sizes. Journal of Geophysical Research 94, 17917-17935.CrossrefGoogle Scholar

  • MAGRI F., BAYER U., CLAUSNITZER V., JAHNKE C., DIERSCH H.-J., FUHRMANN J., MÖLLER P., PEKDEGER A., TESMER M., VOIGT H., 2005: Deep reaching fluid flow close to convective instability in the NE German basin — results from water chemistry and numerical modeling. Tectonophysics 397, 5-20.Google Scholar

  • MAJOROWICZ J., 2004: Thermal lithosphere across the Trans-European Suture Zone in Poland. Geological Quarterly 48, 1-14.Google Scholar

  • MAJOROWICZ J., ČERMAK V., ŠAFANDA J., KRZYWIEC P., WRÓBLEWSKA M., GUTERCH A., GRAD M., 2003: Heat flow models across the Trans-European Suture Zone in the area of the POLONAISE 97 seismic experiment. Physics and Chemistry of the Earth 28, 375-391.Google Scholar

  • MALISZEWSKA A., 1997: Wiek K/Ar włóknistego illitu z piaskowców czerwonego spagowca Wielkopolski. In: Datowanie minerałów i skał. IV Ogólnopolska Sesja Naukowa, 50-55, UMCS, Lublin.Google Scholar

  • MALISZEWSKA A., KIERSNOWSKI H., JACKOWICZ E., 2003: Wulkanoklastyczne osady czerwonego spagowca dolnego na obszarze Wielkopolski. Prace Państwowego Instututu Geologicznego 179, 1-59 (in Polish with English abstract).Google Scholar

  • MANNING C.E., INGEBRITSEN S.E., 1999: Permeability of the continental crust: implications of geo-thermal data and metamorphic systems. Reviews of Geophysics 37, 127-150.CrossrefGoogle Scholar

  • MAREK S., PAJCHLOWA M., 1997: Epikontynetalny perm i mezozoik w Polsce. Prace Państwowego Instytutu Geologicznego 153, 1-452 (in Polish with English abstract).Google Scholar

  • MARX J., HUEBSCHER H.-D., HOTH K., KORICH D., KRAMER W., 1995: Vulkanostratigraphie und Geochemie der Eruptivkomplexe. In: Plein E (ed.), Norddeutsches Rotliegendbecken — Rotliegend Monographie Teil II, 83, 54-83, Courier Forschungsinstitut Senkenberg.Google Scholar

  • MAZUR S., SCHECK-WENDEROTH M., KRZYWIEC P., 2005: Different modes of the Late Cretaceous-Early Tertiary inversion in the North German and Polish basins. International Journal of Earth Sciences 94, 782-798.CrossrefGoogle Scholar

  • MCCANN T., 1996: The tectonosedimentary evolution of the northern margin of the Carboniferous basin of NE Germany. Tectonophysics 313, 119-144.Google Scholar

  • MICHALIK M., 2001: Diagenesis of the Weissliegend sandstones in the south-western margin of the Polish Rotliegend basin. Prace Mineralogiczne 91, 1-176.Google Scholar

  • MICHALIK M., BANAŚ M., SMOLAK W., 2004: Secondary minerals in the Lower Permian Filipowice tuff: a record of the Liassic hydrothermal event. Acta Mineralogica — Petrographica, Abstract Series 4, 72.Google Scholar

  • MICHALIK M., PĚKALA M., WÓJTOWICZ A., 2003: Alteration of Lower Permian volcanic rocks from SW part of Polish Rotliegend basin: clay minerals record of a long history. Book of Abstracts, Euroclay 2003, European Clay Conference, 190, Modena, Italy.Google Scholar

  • MIHALYNUK M.G., GHENT E.D., 1996: Regional depth-controlled hydrothermal metamorphism in the Zymoetz River area. British Columbia. Canadian Journal of Earth Sciences 33, 1169-1184.Google Scholar

  • NEUMANN E.-R., WILSON M., HEEREMANS M., SPENCER E.A., OBST K., TIMMERMANN M.J., KIRSTEIN L., 2004: Carboniferous-Permian rifting and magmatism in southern Scandinavia, the North Sea and northern Germany: A review. In: M. Wilson E.-R., Neumann G.R., Davies M.J., Timmerman M., Heeremans M., Larsen B.T. (eds), Permo-Carboniferous Magmatism and Rifting in Europe, Geological Society Special Publications, 223, 11-40, The Geological Society of London.Google Scholar

  • NOURALIEE J., 2000: Borehole geology and hydrothermal alteration of well NJ-20, Nesjavellir high-temperature area, SW Iceland. United Nations University Geothermal Training Programme, Report 15, 303-330, Iceland.Google Scholar

  • OLIVER N.H.S., 2001: Linking of regional and local hydrothermal systems in the mid-crust by shearing and faulting. Tectonophysics 335, 147-161.Google Scholar

  • OSZCZEPALSKI S., 1999: Wiek mineralizacji cechsztyńskiej w świetle radiometrycznych badań illitu metodą K-Ar. In: Muszer A. (ed.), Wybrane zagadnienia stratygrafii, tektonikii okruszcowania Dolnego Śląska, 75-84, Wyd. Uniwersytetu Wrocĺwskiego, Wrocĺw (in Polish).Google Scholar

  • PAULICK H., BREITKREUZ C., 2005: The Late Paleozoic felsic lava-dominated large igneous province in northeast Germany: volcanic facies analysis based on drill cores. International Journal of Earth Sciences 94, 834-850.CrossrefGoogle Scholar

  • PLEIN E. 1993: Bemerkungen zum Ablaluf der paläogeographischen Entwicklung im Stefan und Rotliegend des Norddeutschen Beckens. Geologische Jahrbuch A131, 99-116.Google Scholar

  • POLYANSKY O.P., REVERDATTO V.V., KHOMENKO A.V., KUZNETSOVA E.N., 2003: Modeling of fluid flow and heat transfer induced by basaltic near-surface magmatism in the Lena-Tunguska petroleum basin (Eastern Siberia, Russia). Journal of Geochemical Exploration 78-79, 687-692.Google Scholar

  • PROTAS A., 2004: Wstěpna ocena wyników badań izotopowych tufów dolnokarbońskich w strefie Koszalin-Chojnice. In: Protas A., Mikóĺjewski Z., Buniak A. (eds), Pozycja geologiczna i petrologia utworów podłoźa permu w strefie Koszalin-Chojnice, 123-128, Bogucki Wydawnictwa Naukowe, Poznań, (in Polish).Google Scholar

  • RIEKE H., MCCANN T., KRAWCZYK C.M., NEGENDANK J.F.W., 2003: Evaluation of controlling factors on facies distribution and evolution in an arid continental environment: an example from the Rotliegend of the NE German Basin. The Geological Society of London Special Publications 208, 71-94.Google Scholar

  • ROEDDER E., 1984: Fluid inclusions. Reviews in Mineralogy 12, 1-644.Google Scholar

  • RYKA W., 1981: Some problems of the Autunian volcanism in Poland. In: International Symposium "Central European Permian", Warsaw 1978, 165-179, Geological Institute, Warszawa.Google Scholar

  • SADOWSKI K., MADEJ S., 2001: Petrography of mafic rocks from the Kotusz-1 borehole (northern part of Fore-Sudetic Monocline). Mineralogical Society of Poland — Special Papers 18, 180-185.Google Scholar

  • SCHECK M., BAYER U., 1999: Evolution of the Northeast German Basin — inferences from a 3D structural model and subsidence analysis. Tectonophysics 313, 145-169.CrossrefGoogle Scholar

  • SCHECK-WENDEROTH M., LAMARCHE J., 2005: Crustal memory and basin evolution in the Central European Basin System—new insights from a 3D structural model. Tectonophysics 397, 143-165.Google Scholar

  • SCHIFFMAN P., DAY H.W., 1999: Petrological methods for the study of very low-grade metabasites. In: Frey M., Robinson D. (eds), Low-Grade Metamorphism, 108-142, Blackwell Science Ltd.Google Scholar

  • SCHIFFMAN P., FRIDLEIFSSON G.O., 1991: The smectite - chlorite transition in drillhole NJ-15, Nesjavellir geothermal field, Iceland: XRD, BSE, and electron microprobe investigations. Journal of Metamorphic Geology 9, 679-696.CrossrefGoogle Scholar

  • SCHIFFMAN P., LIOU J.G., 1980: Synthesis and stability relations of Mg-Al pumpellyite, Ca4Al5MgSi6O21(OH)7. Journal of Petrology 21, 441-474.CrossrefGoogle Scholar

  • SCHIFFMAN P., SOUTHARD R.J., 1996: Cation exchange capacity of layer silicates and palagonitized glass in mafic volcanic rocks: A comparative study of bulk extraction and in situ techniques. Clays and Clay Minerals 44, 624-634.CrossrefGoogle Scholar

  • SCHMIDT-MUMM A., WOLFGRAMM M., 2002: Diagenesis and fluid mobilization during the evolution of the North German Basin — evidence from fluid inclusion and sulphur isotope analysis. Marine and Petroleum Geology 19, 229-246.CrossrefGoogle Scholar

  • SCHMIDT-MUMM A., WOLFGRAMM M., 2004: Fluid systems and mineralization in the north German and Polish basin. Geofluids 4, 315-328.CrossrefGoogle Scholar

  • SCHNEIDER J., GEBHARDT U., 1993: Litho- und Biofaziesmuster in intra- und extramontanen Senken des Rotliegend (Perm, Nord und Ostdeutschland). Geologische Jahrbuch A131, 57-98.Google Scholar

  • SCHNEIDER J., HAACK U., STEDINGK K., 2003: Rb-Sr dating of epithermal vein mineralization stages in the eastern Harz Mountains (Germany) by paleomixing lines. Geochimica et Cosmochimica Acta 67, 1803-1819.CrossrefGoogle Scholar

  • SHMONOV V.M., VITOVTOVA V. M., ZHARIKOV A.V., GRAFCHIKOV A.A., 2002: Fluid permeability of the continental crust: Estimation from Experimental Data. Geochemistry International 40 Suppl. 1, 3-13.Google Scholar

  • SIEMASZKO E., 1978: Permskie skaly wylewne w poludniowo-zachodniej części monokliny przedsuckiej. Kwartalnik Geologiczny 22, 571-584 (in Polish).Google Scholar

  • SIEMASZKO E., 1981: Autunian intrusives in the Fore-Sudetic Monocline. In: International Symposium "Central European Permian", Warsaw 1978, 201-211, Geological Institute, Warszawa.Google Scholar

  • SMITH R.E., WILTSCHKO D.V., 1996: Generation and maintenance of abnormal fluid pressures beneath a rampling thrust sheet: isotropic permeability experiments. Journal of Structural Geology 18, 951-970.CrossrefGoogle Scholar

  • SPECZIK S., RYDZEWSKI A., 1983: Postmagmatic processes in Lower Permian volcanic rocks associated with the Źry pericline, south-western Poland. Archiwum Mineralogiczne 39, 79-91.Google Scholar

  • STEIGER R.H., JÄGER E., 1977: Subcommision on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Sciences Letters 36, 359-362.Google Scholar

  • STEINER A., 1977: The Wairakei geothermal area, North Island, New Zealand. New Zeland Geological Survey Bulletin 90, 1-136.Google Scholar

  • STEPHENSON R.A., NARKIEWICZ M., DADLEZ R., VAN WEES J.-D., ANDRIESSEN P., 2003: Tectonic subsidence modeling of the Polish Basin in the light of new data on crustal structure and magnitude of inversion. Sedimentary Geology 156, 59-70.Google Scholar

  • TEAGLE D.A.H., ALT J.C., BACH W., HALLIDAY A.N., ERZINGER J., 1996: Alteration of the upper ocean crust in a ridge-flank hydrothermal upflow zone: mineral, chemical, and isotopic constrains from Hole 896A. Proceedings of the Ocean Drilling Program, Scientific Report 148, 119-150.Google Scholar

  • TEKLEMARIAM M., BATTAGLIA S., GIANELLI G., RUGGIERI G., 1996: Hydrothermal alteration in the Aluto-Langano geothermal field, Ethiopia. Geothermics 25, 679-702.CrossrefGoogle Scholar

  • THOMPSON A.B., 1997: Flow and focusing of metamorphic fluids. In: Jamtveit B., Yardley B. (eds), Fluid Flow Transport in Rocks. Mechanisms and Effects. 297-314, Chapman Hall.Google Scholar

  • TOMASSÓN J., KRISTMANNSDÓTTIR H., 1972: High temperature alteration minerals and thermal brines, Reykjanes, Iceland. Contributions to Mineralogy and Petrology 36, 123-134.Google Scholar

  • VOSTEEN H.-D., RATH V., SCHMIDT-MUMM A., CLAUSER C., 2004. The thermal regime of the Northeastern German Basin from 2-D inversion. Tectonophysics 386, 81-95.Google Scholar

  • WANGEN M., MUNZ I.A., 2004: Formation of quartz veins by local dissolution and transport of silica. Chemical Geology 209, 179-192.CrossrefGoogle Scholar

  • WIERZCHOWSKA-KICUŁOWA K., 1984: Budowa geologiczna utworów podpermskich monokliny przed-sudeckiej. Geologia Sudetica 19, 121-142.Google Scholar

  • WINCHESTER J.A., FLOYD P.A., 1977: Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20, 325-343.CrossrefGoogle Scholar

  • WINCHESTER J.A., THE PACE TMR NETWORK TEAM, 2003: Palaeozoic amalgamation of Central Europe: new results from recent geological and geophysical investigations. Tectonophysics 360, 5-21.Google Scholar

  • WISIAN K.W., BLACKWELL D.D., 2004: Numerical modeling of Basin and Range geothermal systems. Geothermics 33, 713-741.CrossrefGoogle Scholar

  • ZIEGLER P.A., 2005: Europe — Permian to Recent Evolution. In: Encyclopedia of Geology, 102-125, Elsevier Ltd.Google Scholar

  • ZWINGMANN H., CLAUER N., GAUPP R., 1999: Structure-related geochemical (REE) and isotopic characteristics of clay minerals from Rotliegend sandstone reservoirs (Permian, northern Germany). Geochimica et Cosmochimica Acta 63, 2805-2823.CrossrefGoogle Scholar

  • ŻELAŹNIEWICZ A., MARHEINE D., OBERC-DZIEDZIC T., 2003: A late Tournaisian synmetamorphic folding and thrusting in the eastern Variscan foreland: 40Ar/39Ar evidence from the phyllites of the Wolsztyn-Leszno High, western Poland. International Journal of Earth Sciences 92, 185-194.Google Scholar

About the article

Published Online: 2007-02-05

Published in Print: 2006-01-01

Citation Information: Mineralogia, Volume 37, Issue 1, Pages 3–49, ISSN (Online) 1899-8526, ISSN (Print) 1899-8291, DOI: https://doi.org/10.2478/v10002-007-0004-y.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Jan Pašava, Slawomir Oszczepalski, and Andao Du
Mineralium Deposita, 2010, Volume 45, Number 2, Page 189

Comments (0)

Please log in or register to comment.
Log in