Jump to ContentJump to Main Navigation
Show Summary Details
In This Section


The Journal of Mineralogical Society of Poland

2 Issues per year

CiteScore 2016: 0.36

Open Access
See all formats and pricing
In This Section

EPR Study of Paramagnetic Defects in Clay Minerals

Joanna Babińska
  • Building Research Institute, ul. Filtrowa 1, 00-611 Warszawa, Poland
/ Krystyna Dyrek
  • Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Kraków, Poland
/ Piotr Wyszomirski
  • Faculty of Material Science and Ceramics, AGH-University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
Published Online: 2008-11-21 | DOI: https://doi.org/10.2478/v10002-007-0021-x

EPR Study of Paramagnetic Defects in Clay Minerals

Radiation induced defects (RID-s) and transition metal ion impurities were revealed by EPR (Electron Paramagnetic Resonance) spectroscopy in kaolinites from a number of Polish deposits. Arelationship between the intensity of the EPR signals of the RID-s and quantity of radioactive elements was defined in these minerals. In one of the deposits of kaolinites (Wyszonowice) the EPR signal intensity depends on grain size. Other clay minerals studied (illites, montmorillonites) only show weak signals of the RID type.

Badania paramagnetycznych defektów w minerałach ilastych metodą EPR

Punktowe defekty strukturalne typu RID-s były badane metodą elektronowego rezonansu paramagnetycznego (EPR) w próbkach kaolinitu pochodzących z różnych złóż Polski. Stwierdzono w nich zależność między ilością defektów strukturalnych a zawartością pierwiastków promieniotwórczych. W przypadku kaolinitu pochodzącego z jednego ze złóż (Wyszonowice) sygnał EPR zależy też od uziarnienia minerału. Pozostałe badane minerały ilaste (illit, montmorillonit) ujawniają jedynie słabe sygnały typu RID.

Keywords: EPR; clay minerals; radiation induced defects

  • ADAMSKI, A., SPAŁEK, T., SOJKA, Z., 2003: Application of EPR spectroscopy for elucidation of vanadium speciation in VOx\ZrO2 catalysts subjected to redox treatment. Research on Chemical Intermediates 29, 793-804. [Crossref]

  • ALLARD TH., MULLER, J.-P., 1998: Kaolinite as in situ dosimeter for past radionuclide migration at the Earth's surface. Applied Geochemistry 13, 751-765. [Crossref]

  • ALLARD Th., MULLER, J.-P., DRAN, J.-C., MENAGER, M.-T., 1994: Radiation induced paramagnetic defects in natural kaolinites: alpha dosimetry with ion beam irradiation. Physics and Chemistry of Minerals 21, 85-96.

  • ANGEL, B. R., HALL, P. L., 1973: Electron spin resonance studies of kaolins. Proceedings of the International Clay Conference, Madrid, 47-60.

  • ANGEL, B. R., JONES, J. P. E., HALL, P. L., 1974: Electron spin resonance studies of doped synthetic kaolinite. I. Clay Minerals 10, 247-255. [Crossref]

  • BABIŃSKA, J., DYREK, K., SOJKA, Z., WYSZOMIRSKI, P., ŻABIŃSKI, W., 2000: Generation of paramagnetic centers in kaolinites by thermally activated neutrons. Mineralogia Polonica 31, 2, 2-34.

  • BAHRANOWSKI, K., SERWICKA, E. M., STOCH, L., STRYCHALSKI, P., 1993: On the possibility of removal of non-structural iron from kaolinite-group minerals. Clay Minerals 28, 379-391. [Crossref]

  • BAHRANOWSKI, K., DULA, R., ŁABANOWSKA, M., SERWICKA, E. M, 1996: ESR study of Cu centers supported on Al-, Ti-, and Zr-pillared montmorillonite clays. Applied Spectroscopy 50, 1439-1445. [Crossref]

  • CLOZEL, B., ALLARD TH., MULLER, J.-P., 1994: Nature and stability of radiation-induced defects in natural kaolinites: new results and a reappraisal of published works. Clays and Clay Minerals 42, 657-666. [Crossref]

  • CLOZEL, B., GAITE, J.-M., MULLER, J.-P., 1995: Al-O--Al paramagnetic defects in kaolinite. Physics and Chemistry of Minerals 22, 351-356.

  • FRIENDLANDER, H. Z., SALDICK, J., FRINK, C. R., 1963: Electron spin resonance studies spectra in various clay minerals. Nature 199, 61-62.

  • GAITE, J. M., ERMAKOFF, P., MULLER, J.-P, 1993: Characterisation and origin of two Fe3+ EPR spectra in kaolinite. Physics and Chemistry of Minerals 20, 242-247.

  • GAITE, J. M., ERMAKOFF, P., ALLARD, T., MULLER, J.-P, 1997: Paramagnetic Fe3+: a sensitive probe for disorder in kaolinite. Clays and Clay Minerals 45, 4, 496-505. [Web of Science] [Crossref]

  • GÖTZE, J., PLÖTZE, M., FUCHS, H., HABERMANN, D., 1999: Defect structure and luminescence behaviour of agate — results of electron paramagnetic resonance (EPR) and cathodoluminescence (CL) studies. Mineralogical Magazine 63 2, 149-163 [Crossref]

  • GOURNIS, D., MANTAKA-MARKETOU, A. E., KARAKASSIDES, M. A., PETRIDIS, D., 2001: Ionizing radiation induced defects in smectite clays. Physics and Chemistry of Minerals 28, 4, 285-290. [Crossref]

  • HERBILLON, A. J., MESTAGH, M. M., VIELVOYE, L., DEROUANE, E. G., 1976: Iron in kaolinite with special reference to kaolinite from tropical soils. Clay Minerals 11, 201-220. [Crossref]

  • HOFFMAN, E., 1992: Instrumental neutron activation in geoanalysis. Journal of Geochemical Exploration 44, 297-319. [Crossref]

  • IKEYA, M., 1993: New Application of Electron Spin Resonance. Dating, Dosimetry and Microscopy. World Scientific, Singapore.

  • ILDEFONSE, P., MULLER, J. P., CLOZEL, B., CALAS, G., 1991: Record of past contact between altered rocks and radioactive solutions through radiation-induced defects in kaolinite. Materials Research Society. In: Symposium Proceedings 212, 749-756

  • JACKSON, M. L. 1958: Soil Chemical Analysis. Prentice Hall, Englewood Cliffs, New Jersey.

  • KOMUSIŃSKI, J., STOCH, L., 1984: Dehydroxylation of kaolinite-group minerals: an ESR study. Journal of Thermal Analysis 29, 1033-1040. [Crossref]

  • KOMUSIŃSKI, J., STOCH, L., DUBIEL, S. M., 1981: Application of electron paramagnetic resonance and Mössbauer spectroscopy in the investigation of kaolinite-group minerals. Clays and Clay Minerals 29, 23-30. [Web of Science] [Crossref]

  • MADSEN, F. T., 1998: Clay mineralogical investigations related to nuclear waste disposal. Clay Minerals 33, 109-129. [Crossref]

  • MEADS, R. E., MALDEN, P. J., 1975: Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions. Clay Minerals 10, 313-343. [Crossref]

  • MULLER, J. P., CALAS, G., 1989: Tracing kaolinites by their defect centers: kaolinite paragenesis in a laterite (Cameroon). Economic Geology 84, 694-707. [Crossref]

  • MULLER, J. P., CLOZEL, B., ILDEFONSE, P., CALAS, G., 1992: Radiation-induced defects in kaolinites: indirect assessment of radionuclide migration in the geosphere. Applied Geochemistry 1, 205-216. [Crossref]

  • PLÖTZE, M., KAHR, G., HERMANNS STENGELE, R., 2003: Alteration of clay minerals — gamma-irradiation effects on physicochemical properties. Applied Clay Science 23, 195-202. [Crossref]

  • PUSCH, R., 1992: Use of bentonite for isolation of radioactive waste products. Clay Minerals 27, 353-361. [Crossref]

  • PUSHKAREVA, R., KALINICHENKO, E., LYTOVCHENKO, A., PUSHKAREV, A., KADOCHNIKOV, V. M., PLASTYNINA, M., 2002: Irradiation effects on physico-chemical properties of clay minerals. Applied Clay Science 21, 117-123. [Crossref]

  • SHPAK, A. P., KALINICHENKO, E., LYTOVCHENKO, A., KALINICHENKO, E., LEGKOVA, G. V., BAGMUT, N. N., 2003: The effect of à irradiation on the structure and thermal decomposition of brucite. Physics and Chemistry of Minerals 30, 59-68. [Crossref]

  • SORIEUL, S., ALLARD TH., BOIZOT, B., CALAS, G., 2002: Beta radiation effects in montmorillonite. XVIII Meeting of the IMA — Edinburgh, Book of Abstracts.

  • SORIEUL, S., ALLARD TH.,MORIN, G., BOIZOT, B., CALAS, G., 2005: Native and artificial radiation-induced defects in montmorillonite. An EPR study. Physics and Chemistry of Minerals 32, 1-7. [Crossref] [Web of Science]

About the article

Published Online: 2008-11-21

Published in Print: 2007-01-01

Citation Information: Mineralogia, ISSN (Online) 1899-8526, ISSN (Print) 1899-8291, DOI: https://doi.org/10.2478/v10002-007-0021-x. Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in