Jump to ContentJump to Main Navigation
Show Summary Details
More options …


The Journal of Mineralogical Society of Poland

2 Issues per year

CiteScore 2016: 0.36

SCImago Journal Rank (SJR) 2016: 0.127
Source Normalized Impact per Paper (SNIP) 2016: 0.197

Open Access
See all formats and pricing
More options …

Thermochemical characterization of Ca4La6(SiO4)6(OH)2 a synthetic La- and OH-analogous of britholite: implication for monazite and LREE apatites stability

Emilie Janots
  • Institut für Geologie, University of Bern, Switzerland
  • Institut für Mineralogie, WWU Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fabrice Brunet / Bruno Goffé / Christophe Poinssot / Michael Burchard / Lado Cemic
Published Online: 2008-10-08 | DOI: https://doi.org/10.2478/v10002-008-0003-7

Thermochemical characterization of Ca4La6(SiO4)6(OH)2 a synthetic La- and OH-analogous of britholite: implication for monazite and LREE apatites stability

In this contribution, monazite (LREEPO4) solubility is addressed in a chemical system involving REE-bearing hydroxylapatite, (Ca, LREE)10(PO4,SiO4)6(OH)2. For this purpose, a synthetic (La)- and (OH)-analogous of britholite, Ca4La6(SiO4)6(OH)2, was synthesised and its thermodynamic properties were measured. Formation enthalpy of -14,618.4±31.0 kJ·mol-1 was obtained by high-temperature drop-solution calorimetry using a Tian-calvet twin calorimeter (Bochum, Germany) at 975 K using lead borate as solvent. Heat capacities (Cp) were measured in the 143-323 K and 341-623 K ranges with an automated Perkin-Elmer DSC 7. For calculations of solubility diagrams at 298 K, the GEMS program was used because it takes into account solid solutions. In conditions representative of those expected in nuclear waste disposal, calculations show that La-monazite is stable from pH = 4 to 9 with a minimum of solubility at pH = 7. La-bearing hydroxylapatite precipitates at pH > 7 with a nearly constant composition of 99% hydroxylapatite and 1% La-britholite. Each mineral buffers solution at extremely low lanthanum concentrations (log{La} = 10-10-10-15 mol·kg-1 for pH = 4 to 13). In terms of chemical durability, both La-monazite and La-rich apatite present low solubility, a requisite property for nuclear-waste forms.

Keywords: monazite; britholite; apatite; calorimetry; nuclear waste form

  • GABOREAU S., VIEILLARD P., 2004: Prediction of Gibbs free energies of formation of minerals of the alunite supergroup. Geochimica et Cosmochimica Acta 68(16), 3307-3316.CrossrefGoogle Scholar

  • GÄMSJAGER H., MARHOLD H., KONIGSBERGER E., TSAI Y. J., KOLMER H., 1995: Solid-Solute Phase-Equilibria in Aqueous-Solutions .9. Thermodynamic Analysis of Solubility Measurements - La(OH)m(CO3)qrH2O. Zeitschrift Fur Naturforschung Section a Journal of Physical Sciences 50(1), 59-64.Google Scholar

  • GAUCHER E. C., BLANC P., MATRAY J. M., MICHAU N., 2004: Modeling diffusion of an alkaline plume in a clay barrier. Applied Geochemistry 19(10), 1505-1515.CrossrefGoogle Scholar

  • USHAKOV S. V., HELEAN K. B., NAVROTSKY A., BOATNER L. A., 2001: Thermochemistry of rare-earth orthophosphates. Journal of Materials Research 16(9), 2623-2633.CrossrefGoogle Scholar

  • USHAKOV S. V., NAVROTSKY A., FARMER J. M., BOATNER L. A., 2004: Thermochemistry of the alkali rare-earth double phosphates, A3RE(PO4)2. Journal of Materials Research 19(7), 2165-2175.CrossrefGoogle Scholar

  • WEBER W. J., 1981: Radiation-damage in a rare-earth apatite structure. American Ceramic Society Bulletin 60(9), 934-934.Google Scholar

  • ARDEN K., HALDEN N., 1999: Crystallisation and alteration history of britholite in-rare-earth-element-enriched pegmatitic segregations associed with the Eden lake complex. The Canadian Mineralogist 37, 1239-1253.Google Scholar

  • ARDHAOUI K., COULET M. V., BEN CHERIFA A., CARPENA J., ROGEZ J., JEMAL M., 2006a: Standard enthalpy of formation of neodymium fluorbritholites. Thermochimica Acta 444(2), 190-194.Google Scholar

  • ARDHAOUI K., ROGEZ J., BEN CHERIFA A., JEMAL M., SATRE P., 2006b: Standard enthalpy of formation of lanthanum oxybritholites. Journal of Thermal Analysis and Calorimetry 86(2), 553-559.CrossrefGoogle Scholar

  • BANFIELD J. F., EGGLETON R. A., 1989: Apatite replacement and rare-earth mobilization, fractionation, and fixation during weathering. Clays and Clay Minerals 37(2), 113-127.CrossrefGoogle Scholar

  • BERMAN R. G., BROWN T. H., 1985: A Thermodynamic model for multicomponent melts, with application to the system CaO-Al2O3-SiO2 - reply. Geochimica et Cosmochimica Acta 49(2), 613-614.CrossrefGoogle Scholar

  • BERTOLDI C., BENISEK A., CEMIC L., DACHS E., 2001: The heat capacity of two natural chlorite group minerals derived from differential scanning calorimetry. Physics and Chemistry of Minerals 28(5), 332-336.CrossrefGoogle Scholar

  • BOATNER L. A., SALES B. C., 1988: Monazite, Amsterdam.Google Scholar

  • BOCK B., HUROWITZ J. A., McLENNAN S. M., HANSON G. N., 2004: Scale and timing of rare earth element redistribution in the Taconian foreland of New England. Sedimentology 51(4), 885-897.CrossrefGoogle Scholar

  • BOSENICK A., GEIGER C. A., CEMIC L., 1996: Heat capacity measurements of synthetic pyrope-grossular garnets between 320 and 1000 K by differential scanning calorimetry. Geochimica et Cosmochimica Acta 60(17), 3215-3227.Google Scholar

  • CARPENA J., LACOUT J. L., 1997: Des apatites naturelles aux apatites synthétiques- Utilisation des apatites comme matrice de conditionnement de déchets nucléaires séparés. Actualite Chimique 2, 3-9.Google Scholar

  • CETINER Z. S., WOOD S. A., GAMMONS C. H., 2005: The aqueous geochemistry of the rare earth elements. Part XIV. The solubility of rare earth element phosphates from 23 to 150 degrees C. Chemical Geology 217(1-2), 147-169.Google Scholar

  • CHAIRAT C., OELKERS E. H., SCHOTT J., LARTIGUE J. E., 2006: An experimental study of the dissolution rates of Nd-britholite, an apatite-structured actinide-bearing waste storage host analogue. Journal of Nuclear Materials 354(1-3), 14-27.Google Scholar

  • DIAKONOV II, TAGIROV B. R., RAGNARSDOTTIR K. V., 1998: Standard thermodynamic properties and heat capacity equations for rare earth element hydroxides. I. La(OH)3(s) and Nd(OH)3(s). Comparison of thermochemical and solubility data. Radiochimica Acta 81(2), 107-116.Google Scholar

  • DITMARS D. A., DOUGLAS T. B., 1971: Measurement of relative enthalpy of pure alpha-Al2O3 (Nbs heat capacity and enthalpy standard reference material no 720) From 273 to 1173 K. Journal of Research of the National Bureau of Standards Section a-Physics and Chemistry A 75(5), 401-420.Google Scholar

  • EWING R. C., WANG L. M., 2002: Phosphates as nuclear waste forms. In: Phosphates: Geochemical, Geobiological, and Materials Importance Reviews in Mineralogy & Geochemistry, pp. 673-699.Google Scholar

  • FINGER F., BROSKA I., ROBERTS M. P., SCHERMAIER A., 1998: Replacement of primary monazite by apatite-allanite-peidote coronas in an amphibolite facies granite gneiss from the eastern alps. American Mineralogist 83, 248-58.Google Scholar

  • GABOREAU S., BEAUFORT D., VIEILLARD P., PATRIER P., BRUNETON P., 2005: Aluminum phosphatesulfate minerals associated with proterozoic unconformity-type uranium deposits in the east alligator river uranium field, northern territories, Australia. Canadian Mineralogist 43, 813-827.Google Scholar

  • GOFFÉ B., JANOTS E., BRUNET F., POINSSOT C., 2002: Breakdown of thorium phosphate-diphosphate (TPD), Th4(PO4)4P2O7, at 320 degrees C, 50 MPa in Ca-bearing systems, or why TPD does not occur in nature. Comptes Rendus Geoscience 334(14), 1047-1052.Google Scholar

  • HARLOV D. E., ANDERSSON U. B., FORSTER H. J., NYSTROM J. O., DULSKI P., BROMAN C., 2002: Apatitemonazite relations in the kiirunavaara magnetite-apatite ore, northern sweden. Chemical Geology 191, 47-72.Google Scholar

  • HARLOV D. E., MARSCHALL H. R., HANEL M., 2007: Fluorapatite-monazite relationships in granulite-facis metapelites, Schwarzwald, southwest Germany. Mineralogical magazine, 71(2), 223-234.Web of ScienceGoogle Scholar

  • HOLLAND T. J. B., 1989: Dependence of Entropy On Volume For Silicate and Oxide Minerals - a Review and a Predictive Model. American Mineralogist 74(1-2), 5-13.Google Scholar

  • ITO J., 1968: Silicate Apatites and oxyapatites. American Mineralogist 53(5-6), 890-907.Web of ScienceGoogle Scholar

  • JANOTS E., BRUNET F., GOFFÉ B., POINSSOT C., BURCHARD M., CEMIC L., 2007: Thermochemistry of monazite-(La) and dissakisite-(La): Implications for monazite and allanite stability in metapelites. Contributions to Mineralogy and Petrology 154(1), 1-14.Web of ScienceGoogle Scholar

  • JANOTS E., NEGRO F., BRUNET F., GOFFÉ B., ENGI M., BOUYBAOUENE M. L., 2006: Evolution of the REE mineralogy in HP-LT metapelites of the Sebtide complex, Rif, Morocco: Monazite stability and geochronology. Lithos 87(3-4), 214-234.CrossrefGoogle Scholar

  • KAHL W. A., MARESCH W. V., 2001: Enthalpies of formation of tremolite and talc by high-temperature solution calorimetry - a consistent picture. American Mineralogist 86(11-12), 1345-1357.Google Scholar

  • LEV S. M., McLENNAN S. M., MEYERS W. J., HANSON G. N., 1998: A petrographic approach for evaluating trace-element mobility in a black shale. Journal of Sedimentary Research 68(5), 970-980.CrossrefGoogle Scholar

  • MAIER C. G., KELLEY K. K., 1932: An equation for the representation of high temperature heat content data. American Chemical Society Journal 54, 3243-3246.CrossrefGoogle Scholar

  • NAVROTSKY A., 1997: Progress and new directions in high temperature calorimetry revisited. Physics and Chemistry of Minerals 24(3), 222-241.CrossrefGoogle Scholar

  • NAVROTSKY A., RAPP R. P., SMELIK E., BURNLEY P., CIRCONE S., CHAI L., BOSE K., 1994: The behavior of H2O and CO2 in high-temperature lead borate solution calorimetry of volatile-bearing phases. American Mineralogist 79(11-12), 1099-1109.Google Scholar

  • NGUYEN A. M., KONIGSBERGER E., MARHOLD H., GAMSJAGER H., 1993: Solid-solute phase-equilibria in aqueous-solutions. 8. The standard gibbs energy of La2(Co3)3·8H2O. Monatshefte fur Chemie 124(10), 1011-1018.Google Scholar

  • NOE D. C., HUGHES J. M., MARIANO A. N., DREXLER J. W., KATO A., 1993: The crystal structure of monoclinic britholite-(Ce) and britholite-(Y). Zeitschrift fur Kristallographie 206, 233-246.Google Scholar

  • OBERTI R., OTTOLINI L., DELLA VENTURA G., PARODI G. C., 2001: On the symmetry and crystal chemistry of britholite: New structural and microanalytical data. American Mineralogist 86(9), 1066-1075.Google Scholar

  • POITRASSON F., OELKERS E., SCHOTT J., MONTEL J. M., 2004: Experimental determination of synthetic NdPO4 monazite end-member solubility in water from 21 degrees C to 300 degrees C: Implications for rare earth element mobility in crustal fluids. Geochimica et Cosmochimica Acta 68(10), 2207-2221.Google Scholar

  • POPA K., KONINGS R. J. M., GEISLER T., 2007: High-temperature calorimetry of (La(1-x)Ln(x))PO4 solid solutions. Journal of Chemical Thermodynamics 39(2), 236-239.CrossrefGoogle Scholar

  • POPA K., SEDMIDUBSKY D., BENES O., THIRIET C., KONINGS R. J. M., 2006: The high-temperature heat capacity of LnPO4 (Ln = La, Ce, Gd) by drop calorimetry. Journal of Chemical Thermodynamics 38(7), 825-829.CrossrefGoogle Scholar

  • RAI D., FELMY A. R., YUI M., 2003: Thermodynamic model for the solubility of NdPO4(c) in the aqueous Na+-H+-H2PO4--HPO42--OH--Cl--H2O system. Journal of Radioanalytical and Nuclear Chemistry 256(1), 37-43.Google Scholar

  • RASMUSSEN B., 1996: Early-diagenetic REE-phosphate minerals (florencite, gorceixite, crandallite, and xenotime) in marine sandstones: A major sink for oceanic phosphorus. American Journal of Science 296(6), 601-632.Google Scholar

  • RISBUD A. S., HELEAN K. B., WILDING M. C., LU P., NAVROTSKY A., 2001: Enthalpies of formation of lanthanide oxyapatite phases. Journal of Materials Research 16(10), 2780-2783.CrossrefGoogle Scholar

  • ROBIE R. A., HEMINGWAY B. S., 1995: Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. Government Printing Office, Washington, 461p.Google Scholar

  • ROBIE R. A., HEMINGWAY B. S., FISHER J. R., 1979: Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (105 Pascals) pressure and at higher temperatures. U. S. Government Printing Office, Washington, 454 p.Google Scholar

  • SPEAR F. S., PYLE J. M., 2002: Apatite, monazite, and xenotime in metamorphic rocks. In: Phosphates: Geochemical, Geobiological, and Materials Importance Reviews in Mineralogy & Geochemistry, pp. 293-335.Google Scholar

  • TAUNTON A. E., WELCH S. A., BANFIELD J. F., 2000: Microbial controls on phosphate and lanthanide distributions during granite weathering and soil formation. Chemical Geology 169, 371-82.Google Scholar

  • THIRIET C., KONINGS R. J. M., JAVORSKY P., MAGNANI N., WASTIN F., 2005: The low temperature heat capacity of LaPO4 and GdPO4, the thermodynamic functions of the monazite-type LnPO4 series. Journal of Chemical Thermodynamics 37(2), 131.CrossrefGoogle Scholar

About the article

Published Online: 2008-10-08

Published in Print: 2008-01-01

Citation Information: Mineralogia, Volume 39, Issue 1-2, Pages 41–52, ISSN (Online) 1899-8526, ISSN (Print) 1899-8291, DOI: https://doi.org/10.2478/v10002-008-0003-7.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in