Jump to ContentJump to Main Navigation
Show Summary Details
More options …


The Journal of Mineralogical Society of Poland

2 Issues per year

CiteScore 2016: 0.36

SCImago Journal Rank (SJR) 2016: 0.127
Source Normalized Impact per Paper (SNIP) 2016: 0.197

Open Access
See all formats and pricing
More options …

Genesis and stability of accessory phosphates in silicic magmatic rocks: a Western Carpathian case study

Igor Broska
  • Geological Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Igor Petrík
  • Geological Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2008-10-08 | DOI: https://doi.org/10.2478/v10002-008-0004-6

Genesis and stability of accessory phosphates in silicic magmatic rocks: a Western Carpathian case study

The formation of accessory phosphates in granites reflects many chemical and physical factors, including magma composition, oxidation state, concentrations of volatiles and degree of differentiation. The geotectonic setting of granites can be judged from the distribution and character of their phosphates. Robust apatite crystallization is typical of the early magmatic crystallization of I-type granitoids, and of late magmatic stages when increased Ca activity may occur due to the release of anorthite from plagioclase. Although S-type granites also accumulate apatite in the early stages, increasing phosphorus in late differentiates is common due to their high ASI. The apatite from the S-types is enriched in Mn compared to that in I-type granites. A-type granites characteristically contain minor amounts of apatite due to low P concentrations in their magmas. Monazite is typical of S-type granites but it can also become stable in late I-type differentiates. Huttonite contents in monazite correlate roughly positively with temperature. The cheralite molecule seems to be highest in monazite from the most evolved granites enriched in B and F. Magmatic xenotime is common mainly in the S-type granites, but crystallization of secondary xenotime is not uncommon. The formation of the berlinite molecule in feldspars in peraluminous melts may suppress phosphate precipitation and lead to distributional inhomogeneities. Phosphate mobility commonly leads to the formation of phosphate veinlets in and outside granite bodies. The stability of phosphates in the superimposed, metamorphic processes is restricted. Both monazite-(Ce) and xenotime-(Y) are unstable during fluid-activated overprinting. REE accessories, especially monazite and allanite, show complex replacement patterns culminating in late allanite and epidote formation.

Keywords: phosphates; monazite; apatite; xenotime; granite; Western Carpathians

  • BROSKA I., SIMAN P., 1998: The breakdown of monazite in the West-Carpathian Veporic orthogneisses and Tatric granites. Geologica Carpathica 49, 161-167.Google Scholar

  • BROSKA I., PETRÍK I., WILLIAMS C. T., 2000: Coexisting monazite and allanite in peraluminious granitoids of the Tribeč Mountains, Western Carpathians. American Mineralogist 85, 22-32.Google Scholar

  • BROSKA I., KUBIŠ, M., WILLIAMS C. T., KONEČNÝ P. 2002. The composition of rock-forming and accessory minerals from the Gemeric granites (Hnilec area, Gemeric superunit, Western Carpathians). Bulletin of the Czech Geological Survey 7, 147-155.Google Scholar

  • BROSKA I., WILLIAMS C. T., UHER P., KONEČNÝ P., LEICHMANN J., 2004: The geochemistry of phosphorus in different granite suites of the Western Carpathians, Slovakia: the role of apatite and P-bearing feldspar. Chemical geology 205, 1-15.Google Scholar

  • BROSKA I., WILLIAMS C. T., JANÁK M., NAGY G., 2005: Alteration and breakdown of xenotime-(Y) and monazite-(Ce) in granitic rocks of the Western Carpathians, Slovakia. Lithos 82, 71-83.CrossrefGoogle Scholar

  • BROSKA I., HARLOV D., TROPPER P., SIMAN P., 2007: Formation of magmatic titanite and titanite-ilmenite phase relations during granite alteration in the Tribeč mountains, Western Carpathians, Slovakia. Lithos 95, 58-71.CrossrefWeb of ScienceGoogle Scholar

  • BURT D. M., 1989: Compositional and phase relations among rare earth element minerals. In: Geochemistry and mineralogy of rare earth elements, B. R. Lipin & G. A. McKay (Eds.). Reviews in Mineralogy 21, 298-306.Google Scholar

  • BUDZYŇ B., KONEČNÝ P., MICHALIK M., 2006: Breakdown of primary monazite and formation of secondary monazite in gneiss clasts from Gródek at the Jezioro Roźnowskie lake (Poland). Mineralogia Polonica - Special Papers 28, 33-35.Google Scholar

  • CATLOS E., GILLEY L. D., HARRISON T. M., 2002: Interpretation of monazite ages obtained via in situ analysis. Chemical Geology 188, 193-215.Google Scholar

  • CUNEY M., FRIEDRICH M., 1987: Physicochemical and crystal-chemical control on accessory mineral paragenesis in granitoids: Implications for uranium metallogenesis. Bulletin Minèralogie 110, 235-247.Google Scholar

  • FINGER F., KRENN. E., 2007: Three metamorphic monazite generations in a high-pressure rock from the Bohemian Massif and the potentially important role of apatite in stimulating polyphase monazite growth along a PT loop. Lithos 95, 103-115.Web of ScienceGoogle Scholar

  • FRÝDA J., BREITER K., 1995. Alkali feldspars as a main phosphorus reservoir in rare-metal granites: three examples from the Bohemian Massif (Czech Republic). Terra Nova 7, 315-320.CrossrefGoogle Scholar

  • FÖRSTER H. J., 1998a. The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany. Part I. The monazite-(Ce)-brabantite solid solution series. American Mineralogist 83, 259-272.Google Scholar

  • FÖRSTER H. J., 1998b. The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany, Part II. Xenotime. American Mineralogist 83, 1302-1315.Google Scholar

  • GROMET L. P., SILVER L. T., 1983: Rare earth element distributions among minerals in a granodiorite and their petrological implications. Geochimimica Cosmochimica Acta 47, 952-938.Google Scholar

  • HARLOV D. E., FÖRSTER H. J., 2003: Fluid-induced nucleation of (Y+REE)-phosphate minerals within apatite: Nature and experiments. Part II. Fluorapatite. American Mineralogist 88, 1209-1209.Google Scholar

  • HARLOV D. E., WIRTH R., FÖRSTER H. J., 2005: An experimental study of dissolution-reprecipitation in fluorapatite: fluid infiltration and formation of monazite. Contributions to Mineralogy and Petrology 150, 268-286.Google Scholar

  • HEINRICH W., ANDREHS G., FRANZ G., 1997: Monazite-xenotime miscibility gap thermometer. 1. An empirical calibration. Journal of Metamorphic Geology 15, 3-16.CrossrefGoogle Scholar

  • HUGHES J. M., RAKOVAN J., 2002: The crystal structure of apatite: Ca5(PO4)3(F, OH, Cl). In: Phosphates. Geochemical, Geobiological, and Materials Importance. Kohn M. J., Rakovan J., Hughes J. M.(Eds.): Reviews of Mineralogy and Geochemistry 48, 1-12.Google Scholar

  • JANOTS E., BRUNET F., GOFFÉ B., POINSSOT C., BYRCHARD M., CEMIC L., 2007: Thermochemistry of monazite-(La) and dissakisite-(La): implications for monazite and allanite stability in metapelites. Contributions to Mineralogy and Petrology 154, 1-14.Web of ScienceGoogle Scholar

  • KRENN E., FINGER F., 2007: Formation of monazite and rhabdophane at the expense of aalanite during Alpine low temperature retrogression of metapelitic basement rocks from Crete, Greece. Microprobe data and geochronological implications. Lithos 95, 130-147Web of ScienceGoogle Scholar

  • KUCHA H., 1980: Continuity in the monazite-huttonite series. Mineralogical Magazine 43, 387-393.Google Scholar

  • LINTHOUT K., 2007: Tripartite division of the system 2 REEPO4 - CaTh(PO4)2 - 2ThSiO4, discreditation of brabantite, and recognition of cheralite as the name for members dominated by CaTh(PO4)2. Canadian Mineralogist 45, 503-508.CrossrefWeb of ScienceGoogle Scholar

  • LONDON D., ČERNÝ P., LOOMIS J. L., PAN J. J., 1990. Phosphorus in alkali feldspars of rare-element granitic pegmatites. Canadian Mineralogist 28, 771-786.Google Scholar

  • LONDON D., 1992: Phosphorus in S-type magmas: the P2O5 content of feldspars from peraluminious granites, pegmatites and rhyolites. American Mineralogist 77, 126-145.Google Scholar

  • LONDON D., 1998: Phosphorus-rich peraluminious granites. Acta Universitatis Carolinae - Geologica 42, 64-68.Google Scholar

  • MAJKA J., BUDZYŇ B., 2006: Monazite breakdown in metapelites from Wedel Jarlsberg Land, Svalbard - preliminary report. Mineralogia Polonica 37, 61-68.Google Scholar

  • MICHALIK M., SKUBLICKI L., 1999: Phosphate accessory minerals in High Tatra granitoids. Geologica Carpathica 50, Spec. Issue, 123-125.Google Scholar

  • MICHALIK M., POPCZYK R., KUSIAK M., PASZKOWSKI M., 2000: Xenotime zircon intergrowths in the Western Tatra leucogranites. Mineralogical Society of Poland - Special Papers 17, 249-251.Google Scholar

  • NASH W. P., 1972: Apatite chemistry and phosphorus fugacity in a differentiated igneous intrusion. American Mineralogist 57, 877-886.Google Scholar

  • NI Y., HUGHES J. M., MARIANO A. M., 1995: Crystal chemistry of the monazite and xenotime structures. American Mineralogist 80, 21-26.Google Scholar

  • PETRÍK I., KONEČNÝ P., KOVÁČIK M., HOLICKÝ I. 2006: Electron microprobe dating of monazite from the Nizke Tatry Mountains orthogneisses (Western Carpathians, Slovakia). Geologica Carpathica 57, 227-242.Google Scholar

  • PLAŠIENKA D., GRECULA P., PUTIŠ, M., HOVORKA D. & KOVÁČ, M., 1997. Evolution and structure of the Western Carpathians: an overview. In: Geological Evolution of the Western Carpathians (eds. P. Grecula, D. Hovorka & M. Putiš), Mineralia Slovaca, Monograph, 1-24.Google Scholar

  • PYLE J. M., SPEAR F. S., RUDNICK R. L. & MCDONOUGH W. F., 2001: Monazite-xenotime and monazite-garnet equilibrium in a prograde pelite sequence. Journal of Petrology 42, 2083-2107.CrossrefGoogle Scholar

  • ROSE D., 1980: Brabantite, CaTh[PO4]2, a new mineral of the monazite group. Neues Jahrbuch für Mineralogy, Monatshefte 247-257.Google Scholar

  • ROJKOVIČ I., KONEČNÝ P., NOVOTNÝ L., PUŠKELOVÁ L., STREŠKO V., 1999: Quartz-apatite-REE vein mineralization in early paleozoic rocks of the Gemeric superunit, Slovakia. Geologica Carpathica 50, 215-227.Google Scholar

  • SPEAR F., PYLE J. M., 2002: Apatite, monazite and xenotime in metamorphic rocks. In: Phosphates. Geochemical, Geobiological, and Materials Importance. Kohn M. J., Rakovan J., Hughes J. M.(Eds.): Reviews in Mineralogy and Geochemistry 48, 293-335.Google Scholar

  • UHER P., MALACHOVSKÝ P., DIANIŠKA I., KUBIŠ M., 2001: Rare-element Nb-Ta-W mineralization of the tin-bearing Spiš-Gemer granites, Eastern Slovakia. GeoLines 13, 119-120.Google Scholar

  • WATSON E. B., CAPOBIANCO C. J., 1981: Phosphorus and rare earth elements in felsic magmas. An assesment of the role of apatite. Geochimica Cosmochimica Acta 45, 2349-2358.CrossrefGoogle Scholar

  • WATSON E. B., HARRISON T. M. 1984: What can accessory minerals tell us about felsic magma evolution? A framework for experimental study. Proceedings 27th International Geological Congres 11, 503-520.Google Scholar

  • BEA F., FERSHTATER G., CORRETGÉ L. G., 1992: The geochemistry of phosphorus in granite and the effect of aluminium. Lithos 29, 43-45.CrossrefGoogle Scholar

  • BOWIE S. H. U., HORNE J. E. T., 1953: Cheralite, a new mineral of the monazite group.Mineralogical Magazine 30, 93-99.CrossrefGoogle Scholar

  • BREITER K., FRÝDA J., LEICHMANN J., 2002: Phosphorus and rubidium in alkali feldpars: case studies and possible genetic interpretation. In: Breiter K., 2002 (Ed.): Phosphorus- and fluorine-rich fractionated granites. Bulletin of the Czech Geological Survey 77, 93-104.Google Scholar

  • BREITER K., FRÝDA J., SELTMAN R., THOMAS R., 1997: Mineralogical evidence for two magmatic stages in the evolution of an extremely fractionated P-rich rare-metal granite: the Podlesí stock, Krušné Hory, Czech Republic. Journal of Petrology 38, 1723-1739.CrossrefGoogle Scholar

  • ONDREJKA M., UHER P., PRŠEK J., OZDÍN D., 2007: Arsean monazite-(Ce) and xenotime-(Y), REE arsenates and carbonates from the Tisovec-Rejkovo rhyolite, Western Carpathians, Slovakia: Composition and substitution in the (REE, Y)XO4 system (X = P, As, Si, Nb, S). Lithos 95, 116-129.Web of ScienceGoogle Scholar

  • PAN Y., 1997: Zircon- and monazite forming metamorphic reactions at Manitouwadge, Ontario. Canadian Mineralogist 35, 105-118.Google Scholar

  • PAN Y., FLEET M. E., 2002: Compositions of the apatite-group minerals: substitution mechanism and controlling factors. In: Phosphates. Geochemical, Geobiological, and Materials Importance. Kohn M. J., Rakovan J., Hughes J. M. (Eds.). Reviews of Mineralogy and Geochemistry 48, 13-50.Google Scholar

About the article

Published Online: 2008-10-08

Published in Print: 2008-01-01

Citation Information: Mineralogia, Volume 39, Issue 1-2, Pages 53–66, ISSN (Online) 1899-8526, ISSN (Print) 1899-8291, DOI: https://doi.org/10.2478/v10002-008-0004-6.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Rute Salgueiro, Diogo Rosa, Carlos Inverno, Daniel de Oliveira, A. Rita Solá, and Fernanda Guimarães
Journal of Geochemical Exploration, 2014, Volume 146, Page 40
Cecilia Pérez-Soba, Carlos Villaseca, David Orejana, and Teresa Jeffries
Contributions to Mineralogy and Petrology, 2014, Volume 167, Number 5

Comments (0)

Please log in or register to comment.
Log in