Jump to ContentJump to Main Navigation
Show Summary Details
More options …


The Journal of Mineralogical Society of Poland

2 Issues per year

CiteScore 2016: 0.36

SCImago Journal Rank (SJR) 2016: 0.127
Source Normalized Impact per Paper (SNIP) 2016: 0.197

Open Access
See all formats and pricing
More options …

Mineralization of teeth and bones of the cave bear (Ursus spelaeus) from the Biśnik Cave, Southern Poland

Anna Rogóż
  • Institute of Geological Sciences, Jagiellonian University, ul. Oleandry 2a, 30-063 Kraków, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zbigniew Sawłowicz
  • Institute of Geological Sciences, Jagiellonian University, ul. Oleandry 2a, 30-063 Kraków, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paweł Socha / Krzysztof Stefaniak
Published Online: 2010-01-06 | DOI: https://doi.org/10.2478/v10002-009-0003-2

Mineralization of teeth and bones of the cave bear (Ursus spelaeus) from the Biśnik Cave, Southern Poland

The studied bones and teeth of the cave bear (Ursus spelaeus) come from the Biśnik Cave, located in the Częstochowa Upland (Southern Poland). The specimens originate from different geological layers formed since the Odra Glaciation (250-270 thousand years BP). The fossilized bones and teeth were studied using optical microscopy, scanning electron microscopy, X-ray diffraction, FTIR spectroscopy, and INAA. They are built of recrystallized carbonate-rich apatite-(CaOH) and/or apatite-(CaOH). The teeth additionally contain some apatite-(CaF). The lack of collagen and minor REE contents suggest rapid burial and collagen decay in the early stage of diagenesis. The bones and teeth have only limited mineral infillings. In some teeth, Mn-Fe (hydroxy)oxides were found in the dentine canaliculi and in bones, some osteocyte lacunae contain Fe (hydroxy)oxides with admixture of Mn. In one bone specimen, calcite infillings are present in Haversian canals. The infillings formed during later stages of diagenesis and were succeeded by non-filled cracks.

Keywords: bone; teeth; enamel; dentine; apatite; mineral infillings; cave bear

  • Bell L. S. (1990). Paleopathology and diagenesis: An SEM evaluation of structural changes using backscattered electron imaging. Journal of Archaeological Science, 17, 85-102.CrossrefGoogle Scholar

  • Belouafa S., Chaair H., Loukili H., Digua K., & Sallek B. (2008). Characterization of antiseptic apatite powders prepared at biomimetics temperature and pH. Materials Research, 11(1), 93-96. DOI: 10.1590/S1516-14392008000100018CrossrefGoogle Scholar

  • Bocherens H., Brinkam D. B., Dauphin Y., & Mariotti A. (1994). Microstructural and geochemical investigations on late Cretaceous archosaur teeth from Alberta, Canada. Canadian Journal of Earth Science, 31, 783-792.CrossrefGoogle Scholar

  • Brady A. C., White C. D., Longstaffe F. J., & Southham G. (2008). Investigating intra-bone isotopic variations in bioapatite using IR- laser ablation and micromilling: Implications for identifying diagenesis? Palaeogeography, Palaeoclimatology, Palaeoecology, 266, 190-199. DOI: 10.1016/j.palaeo.2008.03.031.CrossrefGoogle Scholar

  • Calafiori A. R., Marotta M., Nastro A., & Martino G. (2004). Low temperature method for the production of calcium phosphate fillers. BioMedical Engineering Online, 3, 8. DOI: 10.1186/1475-925X-3-8.CrossrefGoogle Scholar

  • Cyrek K., Mirosław-Grabowska J., Stefaniak K., & Socha P. (2009). Archaeology, stratigraphy and palaeoecology of the Biśnik Cave. In K. Stefaniak P. Socha & A. Tyc (Eds.), Karst of the Częstochowa Upland and the Eastern Sudetes - Palaeoenvironments and Protection (pp. 77-98). Sosnowiec-Wrocław, Poland: Top Art.Google Scholar

  • Dauphin Y., & Williams C. T. (2004). Diagenetic trends of dental tissues. Comptes Rendus Palevol, 3(6-7), 583-590. DOI: 10.1016/j.crpv.2004.07.007.CrossrefGoogle Scholar

  • Denys C., Wiliam C. T., Dauphin Y., Andrews P., & Fernandez-Jalvo Y. (1996). Diagenetical changes in Pleistocene small mammals bones from Olduvai Bed-1. Palaeogeography, Palaeoclimatology, Palaeoecology, 126, 121-134.Google Scholar

  • Elliott J. C. (2002). Calcium phosphate biominerals. Reviews in Mineralogy and Geochemistry, 48, 427-453. DOI: 10.2138/rmg.2002.48.11.CrossrefGoogle Scholar

  • Elorza J., Astibia H., Murelaga X., & Pereda-Suberbiola X. (1999). Francolite as a diagenetic mineral in dinosaur and other Upper Cretaceous reptile bones (Laño, Iberian Peninsula): microstructural, petrological and geochemical features. Cretaceous Research, 20, 169-187. DOI: 10.1006/cres.1999.0144.CrossrefGoogle Scholar

  • Fleet M. E., & Liu X. (2004). Location of type B carbonate ion in type A-B carbonate apatite synthesized at high pressure. Journal of Solid State Chemistry, 177, 3174-3182. DOI: 10.1016/j.jssc.2004.04.002.CrossrefGoogle Scholar

  • Garland A. N. (1987). Paleohistology. Science and Archaecology, 29, 25-29.Google Scholar

  • Garland A. N. (1989). Microscopical analysis of fossil bone. Applied Geochemistry, 4, 215-229.CrossrefGoogle Scholar

  • Gross K. A. & Berndt C. C. (2002). Biomedical Application of Apatites. Reviews in Mineralogy and Geochemistry, 48, 631-673. DOI: 10.2138/rmg.2002.48.17CrossrefGoogle Scholar

  • Gutiérrez M. (2001). Bone diagenesis and taphonomic history of the Paso Otero 1 bone bed, Pampas of Argentina. Journal of Archaeological Science, 28, 1277-1290. DOI: 10.1006/jasc.2000.0648Google Scholar

  • Gutiérrez-Salazar M., & Reyes-Gasga J. (2003). Microhardness and chemical composition of human tooth. Material Research, 6, 1-7. DOI: 10.1590/S1516-14392003000300011CrossrefGoogle Scholar

  • Hancock R. G. V., Grynpas M. D., & Pritzker K. P. H. (1989). The abuse of bone analyses for archeological dietary studies. Archaeometry, 31, 169-179.CrossrefGoogle Scholar

  • Hedges R. E. M., Millard A. R., & Pike A. W. G. (1995). Measurements and relationships of diagenetic alteration of bone from three archaeological sites. Journal of Archaeological Science, 22, 201-209.CrossrefGoogle Scholar

  • Hoffman E. L. (1992). Instrumental neutron activation in geoanalysis. Journal of Geochemical Exploration, 44, 297-319.CrossrefGoogle Scholar

  • Hubert J. F., Panish P. T., Chure D. J., & Prostak K. S. (1996). Chemistry, microstructure, petrology, and diagenetic model of Jurassic dinosaur bones, Dinosaur National Monument, Utah. Journal of Sedimentary Research, 66, 531-547.Google Scholar

  • Jacques L., Ogle N., Moussa I., Kalin R., Vignaud P., Brunet M., & Bocherens H. (2008). Implications of diagenesis for the isotopic analysis of Upper Miocene large mammalian herbivore tooth enamel from Chad. Palaeogeography, Palaeoclimatology, Palaeoecology, 266, 200-210. DOI: 10.1016/j.palaeo.2008.03.040.CrossrefGoogle Scholar

  • Kohn M. J., Schoeninger M. J., & Valley J. W. (1996). Herbivore tooth oxygen compositions: Effects on diet and physiology. Geochimica et Cosmochimica Acta, 60, 3889-3896. DOI: 10.1016/0016-7037(96)00248-7.CrossrefGoogle Scholar

  • Kohn M. J., Schoeninger J., & Barker W. W. (1999). Altered states: Effect on fossil tooth chemistry. Geochimica et Cosmochimica Acta, 63, 2737-2747. DOI: 10.1016/S0016-7037(99)00208-2.CrossrefGoogle Scholar

  • Longinelli A. (1983). Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research? Geochimica et Cosmochimica Acta, 48, 385-390.Google Scholar

  • Mirosław-Grabowska J. (1998). Stratygrafia osadów czwartorzędowych wschodniej części Pasma Smoleńsko-Niegowonickiego (Wyżyna Krakowsko-Częstochowska). Studia Geologica Polonica, 113, 105-119.Google Scholar

  • Mirosław-Grabowska J. (2002). Litologia i stratygrafia osadów Jaskini Biśnik. In K. Cyrek (Ed.), Jaskinia Biśnik. Rekonstrukcja zasiedlenia jaskini na tle zmian środowiska przyrodniczego (pp. 143-179). Toruń, Poland: Wydawnictwo Uniwersytetu Mikołaja Kopernika.Google Scholar

  • National Cancer Institute (2009). Compact Bone and Spongy (Cancellous Bone). Retriéed November 6, 2009, from http://training.seer.cancer.gov/images/anatomy/skeletal/bone_tissue.jpg

  • Nielsen-Marsh C. M. (1997). Studies in Archaeological Bone Diagenesis. Unpublished doctoral thesis, University of Oxford, United Kingdom.Google Scholar

  • Nielsen-Marsh C. M., & Hedges R. E. M. (2000). Patterns of diagenesis in bones I: The effects of site environments. Journal of Archaeological Science, 27, 1139-1150. DOI: 10.1006/jasc. 1999.0537.CrossrefGoogle Scholar

  • Palmqvist P., Gröcke D. R., Arribas A., & Fariña R. A. (2003). Paleoecological reconstruction of a lower Pleistocene large mammal community using biogeochemical (δ13C, δ15N, δ18O, Sr: Zn) and ecomorphological approaches. Paleobiology, 29, 205-229. DOI: 10.1666/0094-8373(2003)029<0205:PROALP>2.0.CO;2.CrossrefGoogle Scholar

  • Person A., Bocherens H., Saliege J. F., Paris F., Zeitoun V., & Gerard M. (1995). Early diagenetic evolution of bone phosphate: an X-ray diffractometry analysis. Journal of Archaeological Science 22, 211-221.CrossrefGoogle Scholar

  • Pike A. W. G. (1993). Bone Porosity, Water and Diagenesis: Towards a Grand Unified Theory of Bone Diagenesis. Unpublished Bachelor Thesis. University of Bradford, United Kingdom.Google Scholar

  • Pfretzschner H. U. (2000). Microcracks and fossilization of Haversian bone. Neue Jahrbuch für Geologie und Paläontologie Abhandlungen, 216, 413-431.Google Scholar

  • Pfretzschner H. U. (2004). Journal of Archaeological Science: Fossilization of Haversian bone in aquatic environments. Comptes Rendus Palevol, 3, 605-616. DOI: 10.1016/j.crpv.2004.07.006.CrossrefGoogle Scholar

  • Reiche I., Favre-Quattropani L., Calligaro T., Salomon J., Bocherens H., Charlet L., & Menu M. (1999). Trace element composition or archaeological bones and postmortem alteration in the burial environment. Nuclear Instruments and Methods in Physics Research, 150, 656-662. DOI: 10.1016/S0168-583X(98)00949-5.CrossrefGoogle Scholar

  • Rey C., Collins B., Goehl T., Dickson R., & Glimsher M. J. (1989). The carbonate environment in bone mineral: A resolution-enhanced Fourier transform infrared spectroscopy study. Calcified Tissue International, 45, 157-164.PubMedCrossrefGoogle Scholar

  • Rink W. J., & Schwarcz H. P. (1995). Tests for diagenesis in tooth enamel: ESR dating signals and carbonate contents. Journal of Archaeological Science, 22, 251-255.CrossrefGoogle Scholar

  • Sillen A., & Sealy J. C. (1995). Diagenesis of strontium in fossil bone: A reconsideration of Nelson et al. (1986). Journal of Archaeological Science, 22, 313-320. DOI: 10.1006/jasc.1995.0033.CrossrefGoogle Scholar

  • Simmer J. P., & Fincham A. G. (1995). Molecular mechanism of dental enamel formation. Critical Reviews in Oral Biology & Medicine, 6, 84-108. DOI: 10.1177/10454411950060020701.CrossrefGoogle Scholar

  • Skinner H. C. W. (2000). In praise of phosphates, or why vertebrates chose apatite to mineralize their skeletons. International Geological Review, 42, 232-240.Google Scholar

  • Sønju Clasen A. B, & Ruyter I. E. (1997). Quantitative determination of type A and type B carbonate in human deciduous and permanent enamel by means of Fourier Transform Infrared Spectrometry. Advances in Dental Research, 11, 523-527. DOI: 10.1177/08959374970110042101.CrossrefPubMedGoogle Scholar

  • Sukhodub L. F., Moseke C., Sukhodub L. B., Sulkio-Cleff B., Maleev V. Ya., Semenov M. A., Bereznyak E. G., & Bolbukh T. V. (2004). Collagen-hydroxyapatite-water interactions investigated by XRD, piezogravimetry, infrared and Raman spectroscopy. Journal of Molecular Structure, 704, 53-58. DOI: 10.1016/j.molstruc.2003.12.061.CrossrefGoogle Scholar

  • Trueman C. N., & Tuross N. (2002). Trace elements in recent and fossil bone apatite. Reviews in Mineralogy and Geochemistry, 48, 489-521. DOI: 10.2138/rmg.2002.48.13.CrossrefGoogle Scholar

  • Trueman C. N., Behrendsmeyer A. K., Tuross N., & Weiner S. (2004). Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: diagenetic mechanism and the role of sediment pore fluids. Journal of Archaeological Science, 31, 721-739. DOI: 10.1016/j.jas.2003.11.003.CrossrefGoogle Scholar

  • Tuross N., Behrensmeyer A. K., & Eanes E. D. (1989). Strontium increases and crystallinity changes in taphonomic and archaeological bone. Journal of Archaeological Science, 16, 661-672.CrossrefGoogle Scholar

  • Tütken T. (2003). Die Bedeutung der Knochenfrühdiagenese für die Erhaltungsfähigkeit in vivo erworbener Elementund Isotopenzusammensetzungen in fossilen Knochen. Unpublished doctoral dissertation, University of Tübingen, Germany.Google Scholar

  • Tütken T., Pfretzschner H. U., Vennemann T. W., Sun G., & Wang Y. D. (2004). Paleobiology and skeletochronology of Jurassic dinosaurs: implications from the histology and oxygen isotope compositions of bones. Palaeogeography, Palaeoclimatology, Palaeoecology, 206, 217-238. DOI: 10.1016/j.palaeo.2004.01.005.CrossrefGoogle Scholar

  • Tütken T., Vennemann T. W., Janz H., & Heizmann E. P. J. (2006). Palaeoenvironment and palaeoclimate of the Middle Miocene lake in the Steinheim basin, SW Germany: A reconstruction from C, O, and Sr isotopes of fossil remains. Palaeogeography, Palaeoclimatology, Palaeoecology, 241, 457-491. DOI: 10.1016/j.palaeo.2006.04.007.CrossrefGoogle Scholar

  • Tütken T., Furrer H., & Vennemann T. W. (2007). Stable isotope compositions of mammoth teeth from Niederweningen, Switzerland: Implications for the Late Pleistocene climate, environment and diet. Quaternary International, 164-165, 139-150. DOI: 10.1016/j.quaint.2006.09.004.CrossrefGoogle Scholar

  • Tütken T., Vennemann T. W., & Pfretzschner H. U. (2008). Early diagenesis of bone and tooth apatite in fluvial and marine settings: Constraints from combined oxygen isotope, nitrogen and REE analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 266, 254-268. DOI: 10.1016/j.palaeo.2008.03.037.CrossrefGoogle Scholar

  • Wings O. (2004). Authigenic minerals in fossil bones from the Mesozoic of England: poor correlation with depositional environments. Palaeogeography, Palaeoclimatology, Palaeoecology, 204, 15-32. DOI: 10.1016/S0031-0182(03)00709-0.CrossrefGoogle Scholar

  • Wiszniowska T., Socha P., & Stefaniak K. (2002). Czwartorzędowa fauna z osadów Jaskini Biśnik. In K. Cyrek (Ed.), Jaskinia Biśnik. Rekonstrukcja zasiedlenia jaskini na tle zmian środowiska przyrodniczego, 192-220. Toruń, Poland: Wydawnictwo Uniwersytetu Mikołaja Kopernika.Google Scholar

  • Wiśniewski M., Sionkowska A., Kaczmarek H., Lazare S., & Tokarev V. (2007). Wpływ promieniowania laserowego na cienkie błony kolagenowe (Influence of laser irradiation on the thin collagen films). Polimery, 52, 571-578.Google Scholar

  • Wopenka B., & Pasteris J. D. (2005). A mineralogical perspective on the apatite in bone. Materials Science and Engineering: C., 25, 131-143. DOI: 10.1016/j.msec.2005.01.008.CrossrefGoogle Scholar

  • Wychowański P., Kolmas L., Kalinowski E., Krzywicki D., Chomicki P., Gąsiorowska M., Wojtowicz A., & Kołodziejski W. (2006). Analiza porównawcza szkliwa i zębiny ludzkich zębów prawidłowych i nadliczbowych metodą mikrospetroskopii w zakresie średniej podczerwieni. Dental and medical problems, 43, 53-57.Google Scholar

About the article

Published Online: 2010-01-06

Published in Print: 2009-01-01

Citation Information: Mineralogia, Volume 40, Issue 1-4, Pages 65–84, ISSN (Online) 1899-8526, ISSN (Print) 1899-8291, DOI: https://doi.org/10.2478/v10002-009-0003-2.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Héctor Botella, Carlos Martínez-Pérez, and Rodrigo Soler-Gijón
Geodiversitas, 2012, Volume 34, Number 4, Page 761

Comments (0)

Please log in or register to comment.
Log in