Jump to ContentJump to Main Navigation
Show Summary Details
More options …


The Journal of Mineralogical Society of Poland

2 Issues per year

CiteScore 2016: 0.36

SCImago Journal Rank (SJR) 2016: 0.127
Source Normalized Impact per Paper (SNIP) 2016: 0.197

Open Access
See all formats and pricing
More options …

Characterization of granites by 57Fe Mössbauer spectroscopy

Kamaledin Hassan
Published Online: 2010-05-04 | DOI: https://doi.org/10.2478/v10002-009-0008-x

Characterization of granites by 57Fe Mössbauer spectroscopy

Two granite complexes in Egypt, a sodic type and an aluminous type are characterized by Mössbauer spectroscopy. Mössbauer spectra (MS) of the sodic granite show a major doublet of ferric (Fe3+) iron that is attributable to octahedral coordination (M1) sites plus/minus a tetrahedron Fe3+ doublet plus/minus a doublet of ferrous (Fe2+) iron on the M1 sites plus/ minus another Fe2+ (M1) doublet and a sextet of Fe3+. The sextet is attributed to α-Fe2O3 (hematite) and the other Fe components are due to NaCaFeSi2O6 (aegirine-augite) plus/minus minor contributions from (Ca2(Mg, Fe)5(Si, Al)8O22(OH)2 (magnesium-hornblende). Changes in the quadrupole splitting and width line of Fe2+ ions are likely composition-related. The MS of the aluminous-type granite, on the other hand, shows evidence only of single doublets containing Fe2+ or Fe3+ in the octahedral M1 sites, with parameters that remain almost constant. This consistency implies that the existing minerals - K(Mg, Fe2+)3 (Al, Fe3+)Si3O10(OH, F)2 (biotite), (Mg, Fe)6(Si, Al)4O10(OH)8 (clinochlore), (Na, K)Ca2(Fe, Mg)5(Al, Si)8O22(OH)2 (ferrohornblende and magnesiohornblende) - have similar iron positions. The intensity of iron oxidized (Fe3+/ΣFe) for the sodic granite is 79.1 to 100% and for the aluminous granite, 28.4 to 38.2%. The observed Fe3+/ΣFe differences between the two granites are source-related and consistent with distributions of other redox-sensitive elements.

Keywords: granitic types; clinopyroxene; mica; amphibole; Mössbauer spectroscopy; oxygen fugacity; Western Desert

  • Akasaka M. (1983). 57Fe Mössbauer study of clinopyroxenes in the join CaFe3+AlSiO6-CaTiAl2O6. Physics and Chemistry of Minerals, 9, 205-211.Google Scholar

  • Amthauer G., & Rossman G. R. (1984). Mixed valence of iron in minerals with cation clusters. Physics and Chemistry of Minerals, 2, 119-154.Google Scholar

  • Bahgat A. A., & Hassan K. M. (1988). Mixed valent iron in biotite. Hyperfine Interactions, 41, 755-758.Google Scholar

  • Baum E., Treutmann W., Lottermoser W., & Amthauer G. (1997). Magnetic properties of the clinopyroxenes aegirine and hedenbergite: a magnetic susceptibility study on single crystals. Physics and Chemistry of Minerals, 24, 294-300.CrossrefGoogle Scholar

  • Coey J. M. D. (1975). The clay minerals: use of Mössbauer spectroscopy to characterize them and study their transformations. Proceedings - International Conference on Mössbauer Spectroscopy, August 25-30 (pp. 333-353). Cracow, Poland.Google Scholar

  • De Grave E., Van Alboom A., & Eeckhout S. G. (1998). Electronic and magnetic properties of a natural aegirine as observed from its Mössbauer spectra. Physics and Chemistry of Minerals, 25, 378-388.CrossrefGoogle Scholar

  • Dollase W. A., & Gustafson W. I. (1982). Mössbauer spectral analysis of the sodic clinopyroxenes. American Mineralogist, 67, 311-327.Google Scholar

  • Dyar D. M. (1985). A review of Mössbauer data on inorganic glasses: the effects of composition on iron valency and coordination. American Mineralogist, 70, 304-316.Google Scholar

  • Dyar M. D., McEnroe S. A., Murad E., Brown L. L., & Schiellerup H. (2004). The relationship between exsolution and magnetic properties in hemo-ilmenite: Insights from Mössbauer spectroscopy with implications for planetary magnetic anomalies. Geophysical Research Letters, 31, L04608. DOI: 10.1029/2003GL019076.CrossrefGoogle Scholar

  • Dyar D. M., Naney M. T., & Swanson S. E. (1987). Effects of quench method on Fe3+/Fe2+ ratios: a Mössbauer and wet-chemical study. American Mineralogist, 72, 792-800.Google Scholar

  • Egyptian Geological Survey and Mining Authority. (1981). Geological map of Egypt, scale 1:2,000,000. Abbasyia, Cairo, Egypt: Geological Survey and Mining Authority.Google Scholar

  • Eissa N. A., Sallam H. A., & El Bahnassawy H. H. (1994a). Mössbauer study of Egyptian granite. Arab Journal of Nuclear Sciences and Applications, 27, 87-96.Google Scholar

  • Eissa N. A., Abou Sehly A. A., Shash N., Salman F., & El Bahnassawy H. H. (1994b). Mössbauer spectra electrical and thermal conductivities of Egyptian granite. Arab Journal of Nuclear Sciences and Applications, 27, 109-126.Google Scholar

  • Fysh S. A., & Clark P. E. (1982). Aluminous hematite. Physics and Chemistry of Minerals, 8, 257-267.Google Scholar

  • Goldman D. S. (1979). A reevaluation of the Mössbauer spectroscopy of calcic amphiboles. American Mineralogist, 64, 109-119.Google Scholar

  • Hassan K. M. (2005). Geochemical assessment of radioactive lava pockets in El-Seboah granite, Toshki area, south Western Desert, Egypt. Annals of the Geological Survey of Egypt, XXVIII, 195-204.Google Scholar

  • Hassan K. M. (2008a). Characterization of granitic soil samples from Egypt by 57Fe Mössbauer spectroscopy. Isotope and Radiation Research, 40, 107-116.Google Scholar

  • Hassan K. M. (2008b). Petrography, chemistry and radioactivity of granitoids at north Gebel Seri, south Western Desert, Egypt. Isotope and Radiation Research, 40, 615-629.Google Scholar

  • Hassan K. M. (2009). Rhyolite-dacite-trachyandesite association: a Mössbauer spectroscopy study. Hyperfine Interactions, 192, 101-107.Google Scholar

  • Hassan A. M., & Abu Anbar M. A. (1997). Geochemistry and mineral chemistry of some alkalic granites of Egypt. Proceedings - International Conference on Geochemistry of igneous rocks and geochemical exploration, September 3-4 1997 (pp. 121-127). Alexandria, Egypt.Google Scholar

  • Khalaf I. M., Ahmed A. M., & Sewifi B. M. (1994). The granitoids of Ras Muhammad area, south Sinai, Egypt. Egypt Journal of Geology, XXXVIII, 125-139.Google Scholar

  • Khalaf I. M., Abdel Monem A. A., Attawiya Y. M., Ammar S. E., & El-Sawey E. H. (2000). Petrology, geochemistry and radioactivity of Abu Aqarib Alkali granite, Central-Eastern Desert, Egypt. Annals of the Geological Survey of Egypt, 38, 261-274.Google Scholar

  • King P. J., White A. J. R., Chappell B. W., & Allen C. M. (1997). Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38, 371-391.Google Scholar

  • Kress V. C., & Carmichael I. S. E. (1991). The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature. Oxygen fugacity and pressure on their redox states. Contributions to Mineralogy and Petrology, 108, 82-92.Google Scholar

  • Kuzmann E., Nagy S., & Vértes A. (2003). Critical review of analytical applications of Mössbauer spectroscopy illustrated by mineralogical and geological examples. Pure Applied Chemistry, 75, 801-858.Google Scholar

  • List F. K., El-Gaby S., & Tehrani R. (1989). The basement rocks in the Eastern and Western Deserts and Sinai. In M. Hermina E., Klitzsch & S. List (Eds.), Stratigraphic lexicon and explanatory note to the geologic map of Egypt 1:500000 (pp. 33-56). Cairo, Egypt: Egyptian General Petroleum Corporation.Google Scholar

  • Macedo W. A. A., Mariano V. R. P. R. O., Correia Neves J. M., & Svisero D. P. (1994). Mössbauer characterization of biotites from zoned pegmatites. Hyperfine Interactions, 83, 483-487.Google Scholar

  • Marks M., Vennemann T., Siebel W., & Markl G. (2003). Quantification of magmatic and hydrothermal processes in a peralkaline syenite-alkali granite complex based on textures, phase equilibria, and stable and radiogenic isotopes. Journal of Petrology, 44, 1247-1280.Google Scholar

  • McCanta C., Rutherford M. D., Dyar M. D., & Delaney J. S. (2003). Fe3+/?Fe ratios in pigeonite as a function of fo2: a preliminary investigation. Proceedings - XXXV Lunar and Planetary Science Conference, Abstract 1361.Google Scholar

  • McCanta C., Rutherford M. D., Dyar M. D., & Delaney J. S. (2004). The relationship between clinopyroxene Fe3+ content and oxygen fugacity. Proceedings - XXXV Lunar and Planetary Science Conference, Abstract 1198.Google Scholar

  • Sabet A. H. (1972). On the stratigraphy of basement rocks of Egypt. Annals of the Geological Survey of Egypt, II, 79-102.Google Scholar

  • Salvi S., & William-Jones A. E. (2006). Alteration, HFSE mineralization and hydrocarbon formation in peralkaline igneous systems: Insights from the Lake Strange Pluton, Canada. Lithos, 91, 19-34.Google Scholar

  • Whalen B. J., Currie L. K., & Chappell W. B. (1987). A-type granite: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95, 407-419.Google Scholar

About the article

Published Online: 2010-05-04

Published in Print: 2009-01-01

Citation Information: Mineralogia, Volume 40, Issue 1-4, Pages 95–106, ISSN (Online) 1899-8526, ISSN (Print) 1899-8291, DOI: https://doi.org/10.2478/v10002-009-0008-x.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in