Jump to ContentJump to Main Navigation
Show Summary Details
More options …


The Journal of Mineralogical Society of Poland

2 Issues per year

CiteScore 2016: 0.36

SCImago Journal Rank (SJR) 2016: 0.127
Source Normalized Impact per Paper (SNIP) 2016: 0.197

Open Access
See all formats and pricing
More options …

Valences and site characteristics of iron in radioactive magmatic veins (Egypt): A Mössbauer and chemical study

Kamaledin Hassan
Published Online: 2011-02-23 | DOI: https://doi.org/10.2478/v10002-010-0003-2

Valences and site characteristics of iron in radioactive magmatic veins (Egypt): A Mössbauer and chemical study

Radioactive veins in shear zones of the El-Seboah granite in Egypt with anomalous concentrations of Nd, Ce, Zr, Y, Nb, Sm, Th and U were studied by petrographic microscopy, x-ray diffraction, 57Fe Mössbauer and wet chemical methods. The veins are composed essentially of quartz, aegirine-augite and minor K-feldspar ± α-iron oxide (hematite) ± γ-iron oxide hydroxide (goethite). They likely represent late-stage felsic melt that was quenched and devitrified at high temperature to yield crystals and crystallites, and then subjected to low temperature alteration during which most of the K feldspar transformed to kaolinite and opal. Mössbauer parameters of the samples indicate that the existing Fe-bearing minerals are primary, with appreciable ordering in the Fe sites. The bulk-sample iron (ΣFe) contents are extremely high (12.3-22.4%). The extent of oxidation of the Fe has been found to be 100% by Mössbauer spectroscopy and 95.36-99.69% by a chemical method. These conditions of Fe enrichment and strong oxidation suggest that the veins are extreme differentiates of granite magmas where high states of oxygen fugacity prevailed.

Keywords: Egypt; Mössbauer; peralkaline rocks; aegirine-augite; Fe-oxide phases; radioactive/rare metals

  • Abdel Monem, H.M., & El-Afandy, A.H. (1997). Geochemistry of beneficiation studies of U-Th bearing minerals of Um Risha ring complex, Eastern Desert, Egypt. Egyptian Mineralogist, 9, 43-58.Google Scholar

  • Biscaye, P.E. (1965). Mineralogy and sedimentation of recent deep-sea clays in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76, 803-832.Google Scholar

  • Cameron, M., Sueno, S., Prewitt, C.T., & Papike, J.J. (1973). High-temperature crystal chemistry of Acmite, diopside, hedenbergite, jadeite, spodumene, and ureyite. American Mineralogist, 58, 594-618.Google Scholar

  • De Grave, E., Van Alboom, A., & Eeckhout, S.G. (1998). Electronic and magnetic properties of a natural aegirine as observed from its Mössbauer spectra. Physics and Chemistry of Minerals, 25, 378-388.Google Scholar

  • Dollase, W.A., & Gustafson, W.I. (1982). Mössbauer spectral analysis of the sodic clinopyroxenes. American Mineralogist, 67, 311-327.Google Scholar

  • Dyar, M.D., McEnroe, S.A., Murad, E., Brown, L.L., & Schiellerup, H. (2004). The relationship between exsolution and magnetic properties in hemo-ilmenite: Insights from Mössbauer spectroscopy with implications for planetary magnetic anomalies. Geophysical Research Letters, 31, L04608. DOI: 10.1029/2003GL019076.CrossrefGoogle Scholar

  • Hassan, K.M. (2005). Geochemical assessment of radioactive lava pockets in El-Seboah granite, Toshki area, south Western Desert, Egypt. Annals of the Geological Survey of Egypt, 28, 195-204.Google Scholar

  • Hassan, K.M. (2008). Characterization of granitic soil samples from Egypt by 57Fe Mössbauer spectroscopy. Isotope and Radiation Research, 40, 107-116.Google Scholar

  • Hassan, K.M. (2009a). Rhyolite-dacite-trachyandesite association: a Mössbauer spectroscopy study. Hyperfine Interactions, 192, 101-107.Google Scholar

  • Hassan, K.M. (2009b). Characterization of granites by 57Fe Mössbauer spectroscopy. Mineralogia, 40(1-4), 95-106.Google Scholar

  • Khalaf, I.M., Abdel Monem, A.A., Attawiya, Y.M., Ammar, S.E., & El-Sawey, E.H. (2000). Petrology, geochemistry and radioactivity of Abu Aqarib Alkali granite, Central-Eastern Desert, Egypt. Annals of the Geological Survey of Egypt, 38, 261-274.Google Scholar

  • Kuzmann, E., Nagy, S., & Vértes, A. (2003). Critical review of analytical applications of Mössbauer spectroscopy illustrated by mineralogical and geological examples. Pure Applied Chemistry, 75, 801-858.Google Scholar

  • List, F.K., El-Gaby, S., & Tehrani, R. (1989). The basement rocks in the Eastern and Western Deserts and Sinai. In M. Hermina, E., Klitzsch & S. List (Eds.), Stratigraphic lexicon and explanatory note to the geologic map of Egypt 1:500000 (pp. 33-56). Cairo, Egypt: Egyptian General Petroleum Corporation.Google Scholar

  • Marks, M., Vennemann, T., Siebel, W., & Markl, G. (2003). Quantification of magmatic and hydrothermal processes in a peralkaline syenite-alkali granite complex based on textures, phase equilibria, and stable and radiogenic isotopes. Journal of Petrology, 44, 1247-1280.Google Scholar

  • Mc Birney, A.R. (1984). Igneous petrology. California: Freeman Cooper & Company.Google Scholar

  • McCanta, C., Rutherford, M.D., Dyar, M.D., & Delaney, J.S. (2003). Fe3+/ΣFe ratios in pigeonite as a function of ƒO2: a preliminary investigation. Proceedings - 34th Lunar and Planetary Science Conference, 17-21 March 2003 (Abstract 1361). Lunar and Planetary Institute. League City, Texas, U.S.A.Google Scholar

  • McCanta, C., Rutherford, M.D., Dyar, M.D., & Delaney, J.S. (2004). The relationship between clinopyroxene Fe3+ content and oxygen fugacity. Proceedings - 35th Lunar and Planetary Science Conference, 15-19 March 2004 (Abstract 1198). Lunar and Planetary Institute. Houston, Texas, U.S.A.Google Scholar

  • McCarthy, A.C., Downs, R.T., Thompson, R.M., & Redhammer, G.J. (2008). In situ high-pressure single-crystal X-ray study of aegirine, NaFe3+Si2O6, and the role of M1 size in clinopyroxene compressibility. American Mineralogist, 93, 1829-1837.Web of ScienceGoogle Scholar

  • Murad, E. (1982). The characterization of goethite by Mössbauer spectroscopy. American Mineralogist, 67, 1007-1011.Google Scholar

  • NMA (2000). Toshki project phase I. Maadi, Kattamyia, Cairo, Egypt: Nuclear Materials Authority.Google Scholar

  • Poppe, L.J., Paskevich, V.F., Hathaway, J.C., & Blackwood, D.S. (2001). U. S. Geological Survey Open-File Report 01-041 (A laboratory manual for x-ray powder diffraction) from http://pubs.usgs.gov/of/2001/of01-041/index.htm

  • Scott, W.W. (1958). Standard Methods of Chemical Analysis. New Jersey: D. Van Nostrand Company Inc.Google Scholar

  • Scott, W.W., & Furman, N.H. (1952). Standard methods of chemical analysis (5 ed.). New York: Van Nostrand Company Inc.Google Scholar

  • Secco, L., Guastoni, A., Nestola, F., Rehammer, G.J., & Negro, A.D. (2007). Crystal chemistry of aegirine as an indicator of P-T conditions. American Mineralogist, 71, 249-255.Google Scholar

  • Welcher, F.J. (1958). The analytical uses of ethylenediaminetetraacetic acid. New Jersey: D. Van Nostrand Company Inc.Google Scholar

About the article

Published Online: 2011-02-23

Published in Print: 2010-01-01

Citation Information: Mineralogia, Volume 41, Issue 1-2, Pages 23–33, ISSN (Online) 1899-8526, ISSN (Print) 1899-8291, DOI: https://doi.org/10.2478/v10002-010-0003-2.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in